列表

详情


m是偶数。
(1)设n为正整数,m=n(n+1)。
(2)在1,2,3,…,1988这1988个自然数中,每相邻两个数之间任意添加一个加号或减号,设这样组成的运算式的结果是m。

A. 条件(1)充分,但条件(2)不充分。

B. 条件(2)充分,但条件(1)不充分。

C. 条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。

D. 条件(1)充分,条件(2)也充分。

E. 条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分。

参考答案: D

详细解析:

答案:D
【考点判断】 奇数与偶数的运算规律
【解题必知】
相邻两个自然数必为一奇一偶
若干个偶数进行加减运算,结果一定是偶数
偶数个奇数进行加减运算,结果一定是偶数;奇数个奇数进行加减运算,结果一定是奇数
【解题思路】 结合运算规律,由整体式子奇偶性判断式中每部分的奇偶。
【解题步骤】
一、判断条件(1),代入题干,即判断“n为正整数,m=n(n+1),,则m是偶数”是否成立。
因为m=n(n+1)为连续两个自然数的乘积,一奇一偶的乘积必为偶数,故条件充分
二、判断条件(2),代入题干,即判断“在1,2,3,…,1988这1988个自然数中,每相邻两个数之间任意添加一个加号或减号,设这样组成的运算式的结果是m,则m是偶数”是否成立。
1,2,3,…,1988有994个奇数和994个偶数,任意添加加号或减号,始终是994个奇数和994个偶数在加减,必为偶数,充分

上一题