列表

详情


72. 编辑距离

给你两个单词 word1 和 word2请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

 

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

 

提示:

相似题目

相隔为 1 的编辑距离

两个字符串的删除操作

两个字符串的最小ASCII删除和

不相交的线

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class Solution { public: int minDistance(string word1, string word2) { } };

python3 解法, 执行用时: 92 ms, 内存消耗: 17.8 MB, 提交时间: 2023-04-19 10:22:51

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        import functools
        @functools.lru_cache(None)
        def helper(i, j):
            if i == len(word1) or j == len(word2):
                return len(word1) - i + len(word2) - j
            if word1[i] == word2[j]:
                return helper(i + 1, j + 1)
            else:
                inserted = helper(i, j + 1)
                deleted = helper(i + 1, j)
                replaced = helper(i + 1, j + 1)
                return min(inserted, deleted, replaced) + 1
        return helper(0, 0)

java 解法, 执行用时: 5 ms, 内存消耗: 41.4 MB, 提交时间: 2023-04-19 10:22:07

class Solution {
    public int minDistance(String word1, String word2) {
        int n = word1.length();
        int m = word2.length();

        // 有一个字符串为空串
        if (n * m == 0) {
            return n + m;
        }

        // DP 数组
        int[][] D = new int[n + 1][m + 1];

        // 边界状态初始化
        for (int i = 0; i < n + 1; i++) {
            D[i][0] = i;
        }
        for (int j = 0; j < m + 1; j++) {
            D[0][j] = j;
        }

        // 计算所有 DP 值
        for (int i = 1; i < n + 1; i++) {
            for (int j = 1; j < m + 1; j++) {
                int left = D[i - 1][j] + 1;
                int down = D[i][j - 1] + 1;
                int left_down = D[i - 1][j - 1];
                if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
                    left_down += 1;
                }
                D[i][j] = Math.min(left, Math.min(down, left_down));
            }
        }
        return D[n][m];
    }
}

python3 解法, 执行用时: 140 ms, 内存消耗: 18.8 MB, 提交时间: 2023-04-19 10:21:47

'''
dp[i][j] word1的前i个字符和word2的前j个字符的编辑距离
'''
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        n = len(word1)
        m = len(word2)
        
        # 有一个字符串为空串
        if n * m == 0:
            return n + m
        
        # DP 数组
        D = [ [0] * (m + 1) for _ in range(n + 1)]
        
        # 边界状态初始化
        for i in range(n + 1):
            D[i][0] = i
        for j in range(m + 1):
            D[0][j] = j
        
        # 计算所有 DP 值
        for i in range(1, n + 1):
            for j in range(1, m + 1):
                left = D[i - 1][j] + 1  # 删除一个字符
                down = D[i][j - 1] + 1  # 插入一个字符
                left_down = D[i - 1][j - 1]   # 替换一个字符
                if word1[i - 1] != word2[j - 1]:
                    left_down += 1
                D[i][j] = min(left, down, left_down)
        
        return D[n][m]

上一题