40. 组合总和 II
给定一个候选人编号的集合 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。
示例 1:
输入: candidates =[10,1,2,7,6,1,5]
, target =8
, 输出: [ [1,1,6], [1,2,5], [1,7], [2,6] ]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5, 输出: [ [1,2,2], [5] ]
提示:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
相似题目
原站题解
rust 解法, 执行用时: 1 ms, 内存消耗: 2.3 MB, 提交时间: 2025-01-26 01:10:16
impl Solution { pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> { candidates.sort_unstable(); fn dfs(i: usize, left: i32, candidates: &[i32], path: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) { // 所选元素之和恰好等于 target if left == 0 { ans.push(path.clone()); return; } // 在 [i, candidates.len()-1] 中选一个 candidates[j] // 注意选 candidates[j] 意味着 [i,j-1] 中的数都没有选 for j in i..candidates.len() { // 后面的数不需要选了,元素之和必然无法恰好等于 target if left < candidates[j] { break; } // 考虑选 candidates[j] // 如果 j>i,说明 candidates[j-1] 没有选 // 同方法一,所有等于 candidates[j-1] 的数都不选 if j > i && candidates[j] == candidates[j - 1] { continue; } path.push(candidates[j]); dfs(j + 1, left - candidates[j], candidates, path, ans); path.pop(); // 恢复现场 } } let mut ans = vec![]; let mut path = vec![]; dfs(0, target, &candidates, &mut path, &mut ans); ans } }
javascript 解法, 执行用时: 4 ms, 内存消耗: 52.6 MB, 提交时间: 2025-01-26 01:09:57
/** * @param {number[]} candidates * @param {number} target * @return {number[][]} */ var combinationSum2 = function(candidates, target) { candidates.sort((a, b) => a - b); const ans = []; const path = []; var dfs = function(i, left) { // 所选元素之和恰好等于 target if (left === 0) { ans.push([...path]); return; } // 在 [i, candidates.length-1] 中选一个 candidates[j] // 注意选 candidates[j] 意味着 [i,j-1] 中的数都没有选 for (let j = i; j < candidates.length && candidates[j] <= left; j++) { // 如果 j>i,说明 candidates[j-1] 没有选 // 同方法一,所有等于 candidates[j-1] 的数都不选 if (j > i && candidates[j] === candidates[j - 1]) { continue; } path.push(candidates[j]); dfs(j + 1, left - candidates[j]); path.pop(); // 恢复现场 } }; dfs(0, target); return ans; };
golang 解法, 执行用时: 0 ms, 内存消耗: 4.3 MB, 提交时间: 2025-01-26 01:09:36
func combinationSum2(candidates []int, target int) (ans [][]int) { slices.Sort(candidates) path := []int{} var dfs func(int, int) dfs = func(i, left int) { // 所选元素之和恰好等于 target if left == 0 { ans = append(ans, slices.Clone(path)) return } // 在 [i, len(candidates)-1] 中选一个 candidates[j] // 注意选 candidates[j] 意味着 [i,j-1] 中的数都没有选 for j := i; j < len(candidates) && candidates[j] <= left; j++ { // 如果 j>i,说明 candidates[j-1] 没有选 // 同方法一,所有等于 candidates[j-1] 的数都不选 if j > i && candidates[j] == candidates[j-1] { continue } path = append(path, candidates[j]) dfs(j+1, left-candidates[j]) path = path[:len(path)-1] // 恢复现场 } } dfs(0, target) return ans }
golang 解法, 执行用时: 2 ms, 内存消耗: 2.6 MB, 提交时间: 2024-04-23 14:43:17
func combinationSum2(candidates []int, target int) (ans [][]int) { sort.Ints(candidates) var freq [][2]int for _, num := range candidates { if freq == nil || num != freq[len(freq)-1][0] { freq = append(freq, [2]int{num, 1}) } else { freq[len(freq)-1][1]++ } } var sequence []int var dfs func(pos, rest int) dfs = func(pos, rest int) { if rest == 0 { ans = append(ans, append([]int(nil), sequence...)) return } if pos == len(freq) || rest < freq[pos][0] { return } dfs(pos+1, rest) most := min(rest/freq[pos][0], freq[pos][1]) for i := 1; i <= most; i++ { sequence = append(sequence, freq[pos][0]) dfs(pos+1, rest-i*freq[pos][0]) } sequence = sequence[:len(sequence)-most] } dfs(0, target) return } func min(a, b int) int { if a < b { return a }; return b }
python3 解法, 执行用时: 38 ms, 内存消耗: 16.6 MB, 提交时间: 2024-04-23 14:42:50
class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: def dfs(pos: int, rest: int): nonlocal sequence if rest == 0: ans.append(sequence[:]) return if pos == len(freq) or rest < freq[pos][0]: return dfs(pos + 1, rest) most = min(rest // freq[pos][0], freq[pos][1]) for i in range(1, most + 1): sequence.append(freq[pos][0]) dfs(pos + 1, rest - i * freq[pos][0]) sequence = sequence[:-most] freq = sorted(collections.Counter(candidates).items()) ans = list() sequence = list() dfs(0, target) return ans
java 解法, 执行用时: 3 ms, 内存消耗: 42.5 MB, 提交时间: 2024-04-23 14:42:34
class Solution { List<int[]> freq = new ArrayList<int[]>(); List<List<Integer>> ans = new ArrayList<List<Integer>>(); List<Integer> sequence = new ArrayList<Integer>(); public List<List<Integer>> combinationSum2(int[] candidates, int target) { Arrays.sort(candidates); for (int num : candidates) { int size = freq.size(); if (freq.isEmpty() || num != freq.get(size - 1)[0]) { freq.add(new int[]{num, 1}); } else { ++freq.get(size - 1)[1]; } } dfs(0, target); return ans; } public void dfs(int pos, int rest) { if (rest == 0) { ans.add(new ArrayList<Integer>(sequence)); return; } if (pos == freq.size() || rest < freq.get(pos)[0]) { return; } dfs(pos + 1, rest); int most = Math.min(rest / freq.get(pos)[0], freq.get(pos)[1]); for (int i = 1; i <= most; ++i) { sequence.add(freq.get(pos)[0]); dfs(pos + 1, rest - i * freq.get(pos)[0]); } for (int i = 1; i <= most; ++i) { sequence.remove(sequence.size() - 1); } } }
cpp 解法, 执行用时: 7 ms, 内存消耗: 14.3 MB, 提交时间: 2024-04-23 14:42:16
// dfs class Solution { private: vector<pair<int, int>> freq; vector<vector<int>> ans; vector<int> sequence; public: void dfs(int pos, int rest) { if (rest == 0) { ans.push_back(sequence); return; } if (pos == freq.size() || rest < freq[pos].first) { return; } dfs(pos + 1, rest); int most = min(rest / freq[pos].first, freq[pos].second); for (int i = 1; i <= most; ++i) { sequence.push_back(freq[pos].first); dfs(pos + 1, rest - i * freq[pos].first); } for (int i = 1; i <= most; ++i) { sequence.pop_back(); } } vector<vector<int>> combinationSum2(vector<int>& candidates, int target) { sort(candidates.begin(), candidates.end()); for (int num: candidates) { if (freq.empty() || num != freq.back().first) { freq.emplace_back(num, 1); } else { ++freq.back().second; } } dfs(0, target); return ans; } };
python3 解法, 执行用时: 168 ms, 内存消耗: 13.5 MB, 提交时间: 2020-09-09 22:02:42
class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: candidates.sort() res = [] def backtrack(candidates, tmp): if sum(tmp) > target: return if sum(tmp) == target: res.append(tmp) return for i,k in enumerate(candidates): if i > 0 and k == candidates[i-1]: continue backtrack(candidates[i+1:], tmp + [k]) return res return backtrack(candidates, [])