class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
}
};
剑指 Offer II 099. 最小路径之和
给定一个包含非负整数的 m x n
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:一个机器人每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]] 输出:7 解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]] 输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
注意:本题与主站 64 题相同: https://leetcode.cn/problems/minimum-path-sum/
原站题解
python3 解法, 执行用时: 48 ms, 内存消耗: 16.2 MB, 提交时间: 2022-11-16 11:11:25
class Solution: def minPathSum(self, grid: [[int]]) -> int: ''' grid[i][j]原地修改,修改为走到(i, j)位置的最短路径 ''' for i in range(len(grid)): for j in range(len(grid[0])): if i == j == 0: continue elif i == 0: grid[i][j] = grid[i][j - 1] + grid[i][j] elif j == 0: grid[i][j] = grid[i - 1][j] + grid[i][j] else: grid[i][j] = min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j] return grid[-1][-1]
golang 解法, 执行用时: 8 ms, 内存消耗: 4.2 MB, 提交时间: 2022-11-16 11:09:27
func minPathSum(grid [][]int) int { r, c := len(grid), len(grid[0]) // dp[i][j] 表示向右i, 向下j 的最小和 dp := make([][]int, r) for i := range dp { dp[i] = make([]int, c) } dp[0][0] = grid[0][0] for i := 1; i < r; i++ { dp[i][0] = dp[i - 1][0] + grid[i][0] } for j := 1; j < c; j++ { dp[0][j] = dp[0][j - 1] + grid[0][j] } for i := 1; i < r; i++ { for j := 1; j < c; j++ { dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] } } return dp[r - 1][c - 1] } func min(x, y int) int { if x > y { return y } return x }
python3 解法, 执行用时: 52 ms, 内存消耗: 16.7 MB, 提交时间: 2022-11-16 11:09:00
class Solution: def minPathSum(self, grid: List[List[int]]) -> int: if not grid or not grid[0]: return 0 rows, columns = len(grid), len(grid[0]) dp = [[0] * columns for _ in range(rows)] dp[0][0] = grid[0][0] for i in range(1, rows): dp[i][0] = dp[i - 1][0] + grid[i][0] for j in range(1, columns): dp[0][j] = dp[0][j - 1] + grid[0][j] for i in range(1, rows): for j in range(1, columns): dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] return dp[rows - 1][columns - 1]