列表

详情


剑指 Offer II 099. 最小路径之和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:一个机器人每次只能向下或者向右移动一步。

 

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

 

提示:

 

注意:本题与主站 64 题相同: https://leetcode.cn/problems/minimum-path-sum/

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class Solution { public: int minPathSum(vector<vector<int>>& grid) { } };

python3 解法, 执行用时: 48 ms, 内存消耗: 16.2 MB, 提交时间: 2022-11-16 11:11:25

class Solution:
    def minPathSum(self, grid: [[int]]) -> int:
        '''
        grid[i][j]原地修改,修改为走到(i, j)位置的最短路径
        '''
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if i == j == 0: continue
                elif i == 0:  grid[i][j] = grid[i][j - 1] + grid[i][j]
                elif j == 0:  grid[i][j] = grid[i - 1][j] + grid[i][j]
                else: grid[i][j] = min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j]
        return grid[-1][-1]

golang 解法, 执行用时: 8 ms, 内存消耗: 4.2 MB, 提交时间: 2022-11-16 11:09:27

func minPathSum(grid [][]int) int {
    r, c := len(grid), len(grid[0])
    // dp[i][j] 表示向右i, 向下j 的最小和
    dp := make([][]int, r)
    for i := range dp {
        dp[i] = make([]int, c)
    }

    dp[0][0] = grid[0][0]
    for i := 1; i < r; i++ {
        dp[i][0] = dp[i - 1][0] + grid[i][0]
    }
    for j := 1; j < c; j++ {
        dp[0][j] = dp[0][j - 1] + grid[0][j]
    }
    for i := 1; i < r; i++ {
        for j := 1; j < c; j++ {
            dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
        }
    }
    return dp[r - 1][c - 1] 
}

func min(x, y int) int {
	if x > y {
		return y
	}
	return x
}

python3 解法, 执行用时: 52 ms, 内存消耗: 16.7 MB, 提交时间: 2022-11-16 11:09:00

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        if not grid or not grid[0]:
            return 0
        
        rows, columns = len(grid), len(grid[0])
        dp = [[0] * columns for _ in range(rows)]
        dp[0][0] = grid[0][0]
        for i in range(1, rows):
            dp[i][0] = dp[i - 1][0] + grid[i][0]
        for j in range(1, columns):
            dp[0][j] = dp[0][j - 1] + grid[0][j]
        for i in range(1, rows):
            for j in range(1, columns):
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
        
        return dp[rows - 1][columns - 1]

上一题