参考答案:
详细解析:
在解答本题时,需要注意的第一个问题便是矩阵的乘法到底是怎么进行的。
一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。如:
在本题中,题干部分提到“发现矩阵链乘问题具有最优子结构”,这是利用动态规划法求解最优解问题的典型特征。所以(5)应填动态规划法。
接下来分析(1)-(4)空,这几个空中,最容易回答的是(3)和(4)。(3)空可通过题目给出的递归式分析得到,其中cost数组部分与公式完全一致,而p数组在程序中是seq,所以回答时修正即可,(3)填:cost[i][k]+cost[k+1][j]+seq[i]*seq[k+1]*seq[j+1]。第(4)空的上一句为:tempCost = temp,即保存当前状态最优解,由于在保存最优解时,不仅涉及cost的记录,还涉及其位置k的记录,所以需要在此进行tempTrace=k的操作。
(1)与(2)相对复杂,其中(1)是对i值范围的确定,而(2)是对j的赋值操作(由于后面用到了j,但程序中没有对j的赋值,从而断定该空是对j的赋值)。两者一并起到一个效果,对cost数组操作时的操作范围与顺序。由于在进行矩阵链乘操作时,分析解空间所用到的是cost右上角的三角矩阵,而操作时,是对这个三角矩阵从左至右,呈斜线的访问(如图所示)。所以(1)和(2)分别填i<n-p和j=i+p。
该程序由于涉及3重循环,所以时间复杂度为:O(n3)。通过手动运行程序的方式可知最优解为:
(A1A2)((A3A4)(A5A6))。
总计算次数为2010。