列表

详情


    阅读下列说明和C代码,回答问题1至问题3,将解答填入答题纸的对应栏内。
【说明】
    某工程计算中要完成多个矩阵相乘(链乘)的计算任务。
    两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数,计算量主要由进行乘法运算的次数决定。采用标准的矩阵相乘算法,计算Am×n*Bn×p,需要m*n*p次乘法运算。
    矩阵相乘满足结合律,多个矩阵相乘,不同的计算顺序会产生不同的计算量。以矩阵A110×100,A2100×5,A35×50三个矩阵相乘为例,若按(A1*A2)*A3计算,则需要进行10*100*5+10*5*50=7500次乘法运算;若按A1*(A2*A3)计算,则需要进行100*5*50+10*100*50=75000次乘法运算。可见不同的计算顺序对计算量有很大的影响。
    矩阵链乘问题可描述为:给定n个矩阵,矩阵Ai的维数为pi-1×pi,其中i = 1,2,….n。确定一种乘法顺序,使得这n个矩阵相乘时进行乘法的运算次数最少。
    由于可能的计算顺序数量非常庞大,对较大的n,用蛮力法确定计算顺序是不实际的。经过对问题进行分析,发现矩阵链乘问题具有最优子结构,即若A1*A2*…*An的一个最优计算顺序从第k个矩阵处断开,即分为A1*A2*….Ak和Ak+1*Ak+2*…*An两个子问题,则该最优解应该包含A1*A2*…*Ak的一个最优计算顺序和Ak+1*Ak+2*…An的一个最优计算顺序。据此构造递归式,

    其中,cost[i][j]表示Ai+1*Ai+2*...Aj+1的最优计算的计算代价。最终需要求解cost[0][n-1]。
【C代码】
    算法实现采用自底向上的计算过程。首先计算两个矩阵相乘的计算量,然后依次计算3个矩阵、4个矩阵、…、n个矩阵相乘的最小计算量及最优计算顺序。下面是算法的C语言实现。 
(1)主要变量说明 
n:矩阵数 
seq[]:矩阵维数序列 
cost[][]:二维数组,长度为n*n,其中元素cost[i][j]表示Ai+1*Ai+2*…Aj+1的最优计算的计算代价 
trace[][]:二维数组,长度为n*n,其中元素trace[i][j]表示Ai+1*Ai+2*Aj+1的最优计算对应的划分位置,即k 
(2)函数cmm 
#define  N  100 
int cost[N][N]; 
int trace[N][N]; 
int cmm(int n,int seq[]){ 
    int tempCost; 
    int tempTrace; 
    int i,j,k,p; 
    int temp; 
    for( i=0;i
    for(p=1;p
        for(i=0;  (1) ;i++){
              (2)  
            tempCost = -1; 
            for(k = i;k
            temp=  (3)  
                if(tempCost==-1||tempCost>temp){                
                    tempCost = temp;
                      (4)  
                } 
            } 
            cost[i][j] = tempCost; 
            trace[i][j] = tempTrace; 
        } 
    } 
    return cost[0][n-1]; 

【问题1】(8分)
    根据以上说明和C代码,填充C代码中的空(1)~(4)。
【问题2】(4分)
    根据以上说明和C代码,该问题采用了 (5) 算法设计策略,时间复杂度 (6) 。(用O符号表示)
【问题3】(3分)
    考虑实例n=6,各个矩阵的维数:A1为5*10,A2为10*3,A3为3*12,A4为12*5,A5为5*50,A6为50*6,即维数序列为5,10,3,12,5,50,6。则根据上述C代码得到的一个最优计算顺序为 (7) (用加括号方式表示计算顺序),所需要的乘法运算次数为 (8)

参考答案:

【问题1】
(1)i<n-p
(2)j=i+p
(3)cost[i][k]+cost[k+1][j]+seq[i]*seq[k+1]*seq[j+1]
(4)tempTrace=k
【问题2】
(5)动态规划法
(6)O(n3)                   
【问题3】
(7)((A1A2)((A3A4)(A5A6)))
(8)2010

详细解析:

在解答本题时,需要注意的第一个问题便是矩阵的乘法到底是怎么进行的。

       一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。如:

    在本题中,题干部分提到“发现矩阵链乘问题具有最优子结构”,这是利用动态规划法求解最优解问题的典型特征。所以(5)应填动态规划法。

    接下来分析(1)-(4)空,这几个空中,最容易回答的是(3)和(4)。(3)空可通过题目给出的递归式分析得到,其中cost数组部分与公式完全一致,而p数组在程序中是seq,所以回答时修正即可,(3)填:cost[i][k]+cost[k+1][j]+seq[i]*seq[k+1]*seq[j+1]。第(4)空的上一句为:tempCost = temp,即保存当前状态最优解,由于在保存最优解时,不仅涉及cost的记录,还涉及其位置k的记录,所以需要在此进行tempTrace=k的操作。

       (1)与(2)相对复杂,其中(1)是对i值范围的确定,而(2)是对j的赋值操作(由于后面用到了j,但程序中没有对j的赋值,从而断定该空是对j的赋值)。两者一并起到一个效果,对cost数组操作时的操作范围与顺序。由于在进行矩阵链乘操作时,分析解空间所用到的是cost右上角的三角矩阵,而操作时,是对这个三角矩阵从左至右,呈斜线的访问(如图所示)。所以(1)和(2)分别填i<n-p和j=i+p。

    该程序由于涉及3重循环,所以时间复杂度为:O(n3)。通过手动运行程序的方式可知最优解为:

       (A1A2)((A3A4)(A5A6))。

       总计算次数为2010。