NC54385. Connections
描述
输入描述
Input consists of several test cases. The first line of the input contains the number of tests cases.The first line of each test case contains n and m — the number of cities and the number of roads correspondingly (n ≥ 4, m > 2n). Each of the next m lines contains two numbers xi and yi denoting a road from city xi to city yi (1 ≤ xi, yi ≤ n, xi≠yi). It is guaranteed that it is possible to get from any city to any other city using existing roads only. For each pair (x, y) of cities there is at most one road going from city x to city y and at most one road going from city y to city x. The solution is guaranteed to exist. The sum of m over all test cases in a single input does not exceed 100 000.
输出描述
For each test case output m - 2n lines. Each line describes a road that should be abandoned. Print the road in the same format as in the input: the number of the source city and the number of the destination city. The order of roads in the output does not matter, but each road from the input may appear in the output at most once and each road in the output must have been in the input. It still must be possible to get from any city to any other city using the remaining roads.
示例1
输入:
1 4 9 1 2 1 3 2 3 2 4 3 2 3 4 4 1 4 2 4 3
输出:
1 3
说明:
C++14(g++5.4) 解法, 执行用时: 53ms, 内存消耗: 10900K, 提交时间: 2020-10-06 13:34:30
#pragma GCC optimize("-Ofast","-funroll-all-loops") #include<bits/stdc++.h> //#define int long long using namespace std; const int N=1e5+10; int n,m,vis[N],mark[N][2],a[N],b[N],cnt; vector<pair<int,int> > g[N][2]; void dfs(int x,int k){ mark[x][k]=1; for(auto i:g[x][k]) if(!mark[i.first][k]){ vis[i.second]=1; dfs(i.first,k); } } void solve(){ cin>>n>>m; cnt=0; for(int i=1;i<=n;i++) mark[i][0]=mark[i][1]=0,g[i][0].clear(),g[i][1].clear(); for(int i=1;i<=m;i++){ scanf("%d %d",&a[i],&b[i]); vis[i]=0; g[a[i]][0].push_back({b[i],i}); g[b[i]][1].push_back({a[i],i}); } dfs(1,1),dfs(1,0); for(int i=1;i<=m;i++) if(vis[i]) cnt++; cnt=2*n-cnt; for(int i=1;i<=m;i++) if(!vis[i]&&cnt) cnt--,vis[i]=1; for(int i=1;i<=m;i++) if(!vis[i]) printf("%d %d\n",a[i],b[i]); } signed main(){ int T; cin>>T; while(T--) solve(); return 0; }
C++11(clang++ 3.9) 解法, 执行用时: 50ms, 内存消耗: 11512K, 提交时间: 2020-10-07 21:29:31
#include<bits/stdc++.h> using namespace std; const int N=1e5+10; int n,m,vis[N],mark[N][2],a[N],b[N],cnt; vector<pair<int,int> > g[N][2]; void dfs(int x,int k) { mark[x][k]=1; for(auto i:g[x][k]) if(!mark[i.first][k]) { vis[i.second]=1; dfs(i.first,k); } } void solve() { cin>>n>>m; cnt=0; for(int i=1;i<=n;i++) mark[i][0]=mark[i][1]=0,g[i][0].clear(),g[i][1].clear(); for(int i=1;i<=m;i++) { scanf("%d %d",&a[i],&b[i]); vis[i]=0; g[a[i]][0].push_back({b[i],i}); g[b[i]][1].push_back({a[i],i}); } dfs(1,1),dfs(1,0); for(int i=1;i<=m;i++) if(vis[i]) cnt++; cnt=2*n-cnt; for(int i=1;i<=m;i++) if(!vis[i]&&cnt) cnt--,vis[i]=1; for(int i=1;i<=m;i++) if(!vis[i]) printf("%d %d\n",a[i],b[i]); } signed main() { int T; cin>>T; while(T--) solve(); return 0; }