NC24050. [USACO 2017 Jan P]Subsequence Reversal
描述
To recall, a subsequence is a subset of elements from the cow sequence, found at some series of indices . We say the subsequence is increasing if .
For example, if we had the list
1 6 2 3 4 3 5 3 4
We can reverse the chosen elements
1 6 2 3 4 3 5 3 4 ^ ^ ^ ^
to get
1 4 2 3 4 3 3 5 6 ^ ^ ^ ^
Observe how the subsequence being reversed ends up using the same indices as it initially occupied, leaving the other elements unchanged.
Please find the maximum possible length of an increasing subsequence, given that you can choose to reverse an arbitrary subsequence once.
输入描述
The first line of input contains N. The remaining N lines contain , each an integer in the range .
输出描述
Output the number of elements that can possibly form a longest increasing subsequence after reversing the contents of at most one subsequence.
示例1
输入:
9 1 2 3 9 5 6 8 7 4
输出:
9
C++(clang++11) 解法, 执行用时: 16ms, 内存消耗: 13944K, 提交时间: 2020-12-12 15:56:57
#include<bits/stdc++.h> using namespace std; const int N=52; int a[N],f[N][N][N][N]; void chmax(int &x,int y) { if(x<y)x=y; } int main() { int n,i,l,r,down,up; scanf("%d",&n); for(i=1;i<=n;++i) {scanf("%d",a+i); for(down=1;down<=a[i];++down) for(up=a[i];up<=50;++up) f[i][i][down][up]=1; } for(int l1=2;l1<=n;++l1) for(l=1,r=l1;r<=n;++l,++r) for(int l2=1;l2<=50;++l2) for(down=1,up=l2;up<=50;++down,++up) { int ans=max(f[l][r][down+1][up],f[l][r][down][up-1]); chmax(ans,f[l+1][r][down][up]+(down==a[l])); chmax(ans,f[l][r-1][down][up]+(up==a[r])); chmax(ans,f[l+1][r-1][down][up]+(down==a[r])+(up==a[l])); f[l][r][down][up]=ans; } printf("%d\n",f[1][n][1][50]); }