NC234865. Signal Interference
描述
输入描述
There are no more than 100 test cases in the input.
In each test case, firstly you are given a positive integer N indicating the amount of vertices on A-Land's territory, and an above mentioned real number k, which is rounded to 4 digits after the decimal point.
Then N lines follow. Each line contains two integers x and y (|x|, |y| ≤ 1000), indicating a vertex's coordinate on A's territory, in counterclockwise or clockwise order.
The last two lines of a test case give radio tower A and B's coordinates in the same form as vertexes' coordinates. You can assume that A is not equal to B.
输出描述
For each test case, firstly output the case number, then output your answer in one line following the format shown in sample. Please note that there is a blank after the ':'.
Your solution will be accepted if its absolute error or relative error is no more than .
This problem is special judged.
示例1
输入:
4 0.5000 -1 -1 1 -1 1 1 -1 1 0 0 -1 0
输出:
Case 1: 0.2729710441
C++(g++ 7.5.0) 解法, 执行用时: 45ms, 内存消耗: 544K, 提交时间: 2022-10-04 21:09:21
#include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int> PII; typedef pair<LL, LL> PLL; #define endl '\n' #define fi first #define se second #define ppb pop_back #define pb push_back #define ios ios::sync_with_stdio(0); cin.tie(0); cout.tie(0) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define mset(x, a) memset(x, a, sizeof (x)) #define rep(i, l, r) for(LL i = l; i <= (r); ++ i) #define per(i, r, l) for(LL i = r; i >= (l); -- i) #define reps(i, l, r, d) for(LL i = l; i <= (r); i += d) #define pers(i, r, l, d) for(LL i = r; i >= (l); i -= d) template<class T> bool ckmax(T& a, T b) { return a < b ? (a = b, 1) : 0; } template<class T> bool ckmin(T& a, T b) { return a > b ? (a = b, 1) : 0; } template<class T> vector<T> & operator + (vector<T> & a, vector<T> & b) { a.insert(a.end(), b.begin(), b.end()); return a; } template<class T> vector<T> & operator += (vector<T> & a, vector<T> & b) { return a = a + b; } using point_t = long double; //全局数据类型,可修改为 long long 等 constexpr point_t eps = 1e-8; constexpr long double PI = acosl(-1); // 点与向量 template<typename T> struct point { T x, y; bool operator == (const point & a) const { return abs(x - a.x) <= eps && abs(y - a.y) <= eps; } bool operator < (const point & a) const { if(abs(x - a.x) > eps) return x < a.x - eps; return y < a.y - eps; } bool operator > (const point & a) const { return !((*this) < a || (*this) == a); } point operator + (const point & a) const { return {x + a.x, y + a.y}; } point operator - (const point & a) const { return {x - a.x, y - a.y}; } point operator - () const { return {-x, -y}; } point operator * (const T k) const { return {x * k, y * k}; } point operator / (const T k) const { return {x / k, y / k}; } T operator * (const point & a) const { return x * a.x + y * a.y; } T operator ^ (const point & a) const { return x * a.y - y * a.x; } int toleft (const point & a) const { const auto t = (*this) ^ a; return (t > eps) - (t < -eps); } // a 向量在该向量的左半平面 / 上 / 右半平面 T len2 () const { return x * x + y * y; } T dis2 (const point & a) const { return ((*this) - a).len2(); } // 涉及浮点数 long double len () const { return sqrtl(len2()); } long double dis (const point & a) const { return sqrtl(dis2(a)); } long double ang (const point & a) const { return acosl(min(1.0l, max(-1.0l, ((*this) * a) / ((len() * a.len()))))); } long double toang (const point & a) const { const auto t = ang(a); return (*this ^ a) > 0 ? t : -t; } point rot () const { return {-y, x}; } point rot (const long double rad) const { return {x * cosl(rad) - y * sinl(rad), x * sinl(rad) + y * cosl(rad)}; } point rot (const long double cosr, const long double sinr) const { return {x * cosr - y * sinr, x * sinr + y * cosr}; } }; using Point = point<point_t>; // 极角排序 struct argcmp { bool operator () (const Point & a, const Point & b) const { const auto quad = [] (const Point & a) { if(a.y < -eps) return 1; if(a.y > eps) return 4; if(a.x < -eps) return 5; if(a.x > eps) return 3; return 2; }; const int qa = quad(a), qb = quad(b); if(qa != qb) return qa < qb; const auto t = a ^ b; // if(abs(t) <= eps) return a * a < b * b - eps; // 不同长度的向量需要分开 return t > eps; } }; // 直线 template<typename T> struct line { point<T> p, v; bool operator == (const line & a) const { return v.toleft(a.v) == 0 && v.toleft(p - a.p) == 0; } int toleft (const point<T> & a) const { return v.toleft(a - p); } // 点 a 在该直线的左半平面 / 上 / 右半平面 // 涉及浮点数 long double dis (const point<T> & a) const { return abs(v ^ (a - p)) / v.len(); } point<T> inter (const line & a) const { return p + v * ( (a.v ^ (p - a.p)) / (v ^ a.v) ); } long double inter_dis (const line & a) const { return v.len() * (a.v ^ (p - a.p)) / (v ^ a.v); } point<T> proj (const point<T> & a) const { return p + v * ( (v * (a - p)) / (v * v) ); } long double proj_dis (const point<T> & a) const { return v * (a - p) / v.len(); } }; using Line = line<point_t>; // 线段 template<typename T> struct segment { point<T> a, b; bool operator < (const segment & s) const { return make_pair(a, b) < make_pair(s.a, s.b) ; } // 判定性函数建议在整数域使用 // 判断点是否在线段上 // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上 int is_on (const point<T> & p) const { if(p == a || p == b) return -1; return (p - a).toleft(p - b) == 0 && (p - a) * (p - b) < -eps; } // 判断线段直线是否相交 // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交 int is_inter (const line<T> & l) const { if(l.toleft(a) == 0 || l.toleft(b) == 0) return -1; return l.toleft(a) != l.toleft(b); } // 判断两线段是否相交 // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交 int is_inter (const segment & s) const { if(is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1; const line<T> l = {a, b - a}, ls = {s.a, s.b - s.a}; return l.toleft(s.a) * l.toleft(s.b) == -1 && ls.toleft(a) * ls.toleft(b) == -1; } // 点到线段距离 long double dis (const point<T> & p) const { if((b - a) * (p - a) < -eps || (a - b) * (p - b) < -eps) return min(p.dis(a), p.dis(b)); const line<T> l = {a, b - a}; return l.dis(p); } // 两线段间距离 long double dis (const segment & s) const { if(is_inter(s)) return 0; return min({dis(s.a), dis(s.b), s.dis(a), s.dis(b)}); } }; using Segment = segment<point_t>; // 射线 template<typename T> struct ray { point<T> p, v; // 判定性函数建议在整数域使用 // 判断点是否在射线上 // -1 点在射线端点 | 0 点不在射线上 | 1 点严格在射线上 int is_on (const point<T> & a) const { if(p == a) return -1; return v.toleft(a - p) == 0 && v * (a - p) > eps; } // 判断射线直线是否相交 // -1 直线经过射线端点 | 0 射线和直线不相交 | 1 射线和直线严格相交 int is_inter (const line<T> & l) const { if(l.toleft(p) == 0) return -1; return l.v.toleft(p - l.p) * l.v.toleft(v) == -1; } // 判断射线线段是否相交 // -1 在线段端点或射线端点处相交 | 0 射线和线段不相交 | 1 射线和线段严格相交 int is_inter (const segment<T> & s) const { if(is_on(s.a) || is_on(s.b) || s.is_on(p)) return -1; const point<T> sv = s.b - s.a; return v.toleft(s.a - p) * v.toleft(s.b - p) == -1 && sv.toleft(p - s.a) * sv.toleft(v) == -1; } // 判断两射线是否相交 // -1 在某一射线端点处相交 | 0 两射线不相交 | 1 两射线严格相交 int is_inter (const ray & r) const { if(is_on(r.p) || r.is_on(p)) return -1; const line<T> l = {p, v}, lr = {r.p, r.v}; return is_inter(lr) && r.is_inter(l); } // 点到射线距离 long double dis (const point<T> & a) const { if(v * (a - p) < -eps) return a.dis(p); const line<T> l = {p, v}; return l.dis(a); } // 线段到射线距离 long double dis (const segment<T> & s) const { if(is_inter(s)) return 0; return min({dis(s.a), dis(s.b), s.dis(p)}); } // 射线到射线距离 long double dis (const ray & r) const { if(is_inter(r)) return 0; return min(dis(r.p), r.dis(p)); } // 射线从点 p 沿着方向 v 到达 直线/线段/射线 的距离 // 1. 直线 long double dis_from_p_in_v (const line<T> & l) const { const int t = is_inter(l); if(t <= 0) return t ? 0 : -1; return line<T>{p, v}.inter_dis(l); } // 2. 线段 long double dis_from_p_in_v (const segment<T> & s) const { const int t = is_inter(s); if(t == 0) return -1; if(t == -1) { if(s.is_on(p)) return 0; else if(is_on(s.a) && is_on(s.b)) return min(p.dis(s.a), p.dis(s.b)); } return line<T>{p, v}.inter_dis(line<T>{s.a, s.b - s.a}); } // 3. 射线 long double dis_from_p_in_v (const ray & r) const { const int t = is_inter(r); if(t == 0) return -1; if(t == -1) return r.is_on(p) ? 0 : p.dis(r.p); return line<T>{p, v}.inter_dis(line<T>{r.p, r.v}); } }; using Ray = ray<point_t>; // 多边形 template<typename T> struct polygon { vector<point<T>> p; // 以逆时针顺序存储 size_t nxt (const int i) const { return i == p.size() - 1 ? 0 : i + 1; } size_t pre (const int i) const { return i == 0 ? p.size() - 1 : i - 1; } // 回转数 // 返回值第一项表示点是否在多边形边上 // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内 pair<bool, int> winding (const point<T> & a) const { int cnt = 0; for(size_t i = 0; i < p.size(); i ++ ) { const point<T> u = p[i], v = p[nxt(i)]; if(abs((a - u) ^ (a - v)) <= eps && (a - u) * (a - v) <= eps) return {true, 0}; if(abs(u.y - v.y) <= eps) continue; const line<T> uv = {u, v - u}; if(u.y < v.y - eps && uv.toleft(a) <= 0) continue; if(u.y > v.y + eps && uv.toleft(a) >= 0) continue; if(u.y < a.y - eps && v.y >= a.y - eps) cnt ++ ; if(u.y >= a.y - eps && v.y < a.y - eps) cnt -- ; } return {false, cnt}; } // 多边形面积的两倍 // 可用于判断点的存储顺序是顺时针或逆时针 T area () const { T sum = 0; for(size_t i = 0; i < p.size(); i ++ ) sum += p[i] ^ p[nxt(i)]; return sum; } long double circ() const { long double sum = 0; for(size_t i = 0; i < p.size(); i ++ ) sum += p[i].dis(p[nxt(i)]); return sum; } }; using Polygon = polygon<point_t>; // 凸多边形 template<typename T> struct convex : polygon<T> { // 多边形的邻点叉积前缀和,用于计算凸多边形的凸壳的面积 // 注意:如果是顺时针储存,sum 储存的面积为负数 vector<T> sum; void get_sum () { const auto & p = this -> p; vector<T> a(p.size()); for(size_t i = 0; i < p.size(); i ++ ) a[i] = p[this -> pre(i)] ^ p[i]; sum.resize(p.size()); partial_sum(a.begin(), a.end(), sum.begin()); } T query_sum (const size_t l, const size_t r) const { const auto & p = this -> p; if(l <= r) return sum[r] - sum[l] + (p[r] ^ p[l]); return sum.back() - sum[l] + sum[r] + (p[r] ^ p[l]); } T query_sum () const { return sum.back(); } // 闵可夫斯基和 // 复杂度 O(n) convex operator + (const convex & c) const { const auto & p = this -> p; if(!p.size()) return c; if(!c.p.size()) return *this; vector<segment<T>> e1(p.size()), e2(c.p.size()), edge(p.size() + c.p.size()); vector<point<T>> res; res.reserve(p.size() + c.p.size()); const auto cmp = [] (const segment<T> & u, const segment<T> & v) { return argcmp() (u.b - u.a, v.b - v.a); }; for(size_t i = 0; i < p.size(); i ++ ) e1[i] = {p[i], p[this -> nxt(i)]}; for(size_t i = 0; i < c.p.size(); i ++ ) e2[i] = {c.p[i], c.p[c.nxt(i)]}; rotate(e1.begin(), min_element(e1.begin(), e1.end(), cmp), e1.end()); rotate(e2.begin(), min_element(e2.begin(), e2.end(), cmp), e2.end()); merge(e1.begin(), e1.end(), e2.begin(), e2.end(), edge.begin(), cmp); const auto check = [] (const vector<point<T>> & res, const point<T> & u) { const auto v = *prev(res.end(), 2), w = res.back(); return (w - v).toleft(u - w) == 0 && (w - v) * (u - w) >= -eps; }; auto u = e1[0].a + e2[0].a; for(const auto & v : edge) { while(res.size() > 1 && check(res, u)) res.pop_back(); res.push_back(u); u = u + v.b - v.a; } if(res.size() > 1 && check(res, res[0])) res.pop_back(); return {res}; } // 旋转卡壳 // func 为更新答案的函数,可以根据题目调整位置 template<typename F> void rotcaliper (const F & func) const { const auto & p = this -> p; const auto area = [] (const point<T> & u, const point<T> & v, const point<T> & w) { return (w - v) ^ (u - v); }; for(size_t i = 0, j = 1; i < p.size(); i ++ ) { const auto nxti = this -> nxt(i); func(p[j], p[i], p[nxti]); while(area(p[this -> nxt(j)], p[i], p[nxti]) >= area(p[j], p[i], p[nxti])) { j = this -> nxt(j); func(p[j], p[i], p[nxti]); } } } // 凸多边形的直径的平方 T diameter2 () const { const auto & p = this -> p; if(p.size() <= 1) return 0; if(p.size() == 2) return p[0].dis2(p[1]); T ans = 0; const auto func = [&] (const point<T> & u, const point<T> & v, const point<T> & w) { ans = max({ans, u.dis2(v), u.dis2(w)}); }; rotcaliper(func); return ans; } // 判断点是否在凸多边形内 // 复杂度 O(logn) // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内 int is_in (const point<T> & a) const { const auto & p = this -> p; if(p.size() == 1) return a == p[0] ? -1 : 0; if(p.size() == 2) return segment<T>{p[0], p[1]}.is_on(a) ? -1 : 0; if(a == p[0]) return -1; if((p[1] - p[0]).toleft(a - p[0]) == -1 || (p.back() - p[0]).toleft(a - p[0]) == 1) return 0; const auto cmp = [&] (const point<T> & u, const point<T> & v) { return (u - p[0]).toleft(v - p[0]) == 1; }; const size_t i = lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin(); if(i == 1) return segment<T>{p[0], p[1]}.is_on(a) ? -1 : 0; if(i == p.size() - 1 && segment<T>{p[0], p.back()}.is_on(a)) return -1; if(segment<T>{p[i - 1], p[i]}.is_on(a)) return -1; return (p[i] - p[i - 1]).toleft(a - p[i - 1]) > 0; } // 凸多边形关于某一方向的极点 // 复杂度 O(logn) // 参考资料:https://codeforces.com/blog/entry/48868 template<typename F> size_t extreme (const F & dir) const { const auto & p = this -> p; const auto check = [&] (const size_t i) { return dir(p[i]).toleft(p[this -> nxt(i)] - p[i]) >= 0; }; const auto dir0 = dir(p[0]); const auto check0 = check(0); if(!check0 && check(p.size() - 1)) return 0; const auto cmp = [&] (const point<T> & v) { const size_t vi = &v - p.data(); if(vi == 0) return 1; const auto checkv = check(vi); const auto t = dir0.toleft(v - p[0]); if(vi == 1 && checkv == check0 && t == 0) return 1; return checkv ^ (checkv == check0 && t <= 0); }; return partition_point(p.begin(), p.end(), cmp) - p.begin(); } // 过凸多边形外一点求凸多边形的切线,返回切点下标 // 复杂度 O(logn) // 必须保证点在多边形外 // 必须保证凸多边形点数大于等于 3,点数小于等于 2 的 case 需要特判 pair<size_t, size_t> tangent (const point<T> & a) const { const size_t i = extreme([&] (const point<T> & u) { return u - a; }); const size_t j = extreme([&] (const point<T> & u) { return a - u; }); return {i, j}; } // 求平行于给定直线的凸多边形的切线,返回切点下标 // 复杂度 O(logn) // 必须保证凸多边形点数大于等于 3,点数小于等于 2 的 case 需要特判 pair<size_t, size_t> tangent (const line<T> & a) const { const size_t i = extreme([&] (...) { return a.v; }); const size_t j = extreme([&] (...) { return -a.v; }); return {i, j}; } }; using Convex = convex<point_t>; // 圆 struct Circle { Point c; long double r; bool operator == (const Circle & a) const { return c == a.c && abs(r - a.r) <= eps; } long double circ () const { return 2 * PI * r; } // 周长 long double area () const { return PI * r * r; } // 面积 // 点与圆的关系 // -1 圆上 | 0 圆外 | 1 圆内 int is_in (const Point & p) const { const long double d = p.dis(c); if(abs(d - r) <= eps) return -1; return d < r - eps; } // 直线与圆关系 // 0 相离 | 1 相切 | 2 相交 int relation (const Line & l) const { const long double d = l.dis(c); if(d < r - eps) return 2; return abs(d - r) <= eps; } // 圆与圆关系 // -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含 int relation (const Circle & a) const { if((*this) == a) return -1; const long double d = c.dis(a.c); if(d > r + a.r + eps) return 0; if(abs(d - r - a.r) <= eps) return 1; if(abs(d - abs(r - a.r)) <= eps) return 3; if(d < abs(r - a.r) - eps) return 4; return 2; } // 直线与圆的交点 vector<Point> inter (const Line & l) const { const long double d = l.dis(c); const Point p = l.proj(c); const int t = relation(l); if(t == 0) return {}; if(t == 1) return {p}; const long double k = sqrt(r * r - d * d); return {p - l.v * k / l.v.len(), p + l.v * k / l.v.len()}; } // 圆与圆交点 vector<Point> inter (const Circle & a) const { const long double d = c.dis(a.c); const int t = relation(a); if(t == -1 || t == 0 || t == 4) return {}; Point e = a.c - c; e = e * r / e.len(); if(t == 1 || t == 3) { if(r * r + d * d - a.r * a.r >= -eps) return {c + e}; return {c - e}; } const long double costh = (r * r + d * d - a.r * a.r) / (2 * d * r), sinth = sqrt(1 - costh * costh); return {c + e.rot(costh, -sinth), c + e.rot(costh, sinth)}; } // 圆与圆交面积 long double inter_area (const Circle & a) const { const long double d = c.dis(a.c); const int t = relation(a); if(t == -1) return area(); if(t <= 1) return 0; if(t >= 3) return min(area(), a.area()); const long double costh1 = (r * r + d * d - a.r * a.r) / (2 * r * d), costh2 = (a.r * a.r + d * d - r * r) / (2 * a.r * d); const long double sinth1 = sqrt(1 - costh1 * costh1), sinth2 = sqrt(1 - costh2 * costh2); const long double th1 = acos(costh1), th2 = acos(costh2); return r * r * (th1 - costh1 * sinth1) + a.r * a.r * (th2 - costh2 * sinth2); } // 过圆外一点圆的切线 vector<Line> tangent (const Point & a) const { const int t = is_in(a); if(t == 1) return {}; if(t == -1) return {{a, (a - c).rot()}}; Point e = a - c; e = e * r / e.len(); const long double costh = r / c.dis(a), sinth = sqrt(1 - costh * costh); const Point t1 = c + e.rot(costh, -sinth), t2 = c + e.rot(costh, sinth); // t1, t2 对应为切点 return {{a, t1 - a}, {a, t2 - a}}; } // 两圆的公切线 vector<Line> tangent (const Circle & a) const { const int t = relation(a); if(t == -1 || t == 4) return {}; vector<Line> lines; if(t == 1 || t == 3) { const Point p = inter(a)[0], v = (a.c - c).rot(); lines.push_back({p, v}); // 内切线 } const long double d = c.dis(a.c); const Point e = (a.c - c) / (a.c - c).len(); const auto add = [&] (int sign) { const long double costh = (r - a.r * sign) / d, sinth = sqrt(1 - costh * costh); const Point d1 = e.rot(costh, -sinth), d2 = e.rot(costh, sinth); const Point u1 = c + d1 * r, u2 = c + d2 * r, v1 = a.c + d1 * sign * a.r, v2 = a.c + d2 * sign * a.r; lines.push_back({u1, v1 - u1}), lines.push_back({u2, v2 - u2}); }; if(t <= 2) add(1); // 内切线 if(t == 0) add(-1); // 外切线 return lines; } // 圆上反演 tuple<bool, Point> inverse (const Point & a) const { if(a == c) return {0, {}}; const Point v = a - c; const long double d = r * r / c.dis(a); return {1, c + v * d / v.len()}; } tuple<int, Circle, Line> inverse (const Line & l) const { if(l.toleft(c) == 0) return {2, {}, l}; const Point v = l.toleft(c) == 1 ? -l.v.rot() : l.v.rot(); const long double d = r * r / l.dis(c); const Point p = c + v * d / v.len(); return {1, {(c + p) / 2, d / 2}, {}}; } tuple<int, Circle, Line> inverse (const Circle & a) const { const Point v = a.c - c; if(a.is_in(c) == -1) { const long double d = r * r / (a.r + a.r); const Point p = c + v * d / v.len(); return {2, {}, {p, v.rot()}}; } if(c == a.c) return {1, {c, r * r / a.r}, {}}; const long double d1 = r * r / (c.dis(a.c) - a.r), d2 = r * r / (c.dis(a.c) + a.r); const Point p = c + v * d1 / v.len(), q = c + v * d2 / v.len(); return {1, {(p + q) / 2, p.dis(q) / 2}, {}}; } }; // 点集的凸包 // Andrew 算法,复杂度 O(nlogn) Convex convexhull (vector<Point> p) { vector<Point> st; if(!p.size()) return Convex{st}; sort(p.begin(), p.end()); const auto check = [] (const vector<Point> & st, const Point & u) { const auto v = *prev(st.end(), 2), w = st.back(); return (w - v).toleft(u - w) <= 0; }; for(const Point & u : p) { while(st.size() > 1 && check(st, u)) st.pop_back(); st.push_back(u); } size_t k = st.size(); p.pop_back(); reverse(p.begin(), p.end()); for(const Point & u : p) { while(st.size() > k && check(st, u)) st.pop_back(); st.push_back(u); } st.pop_back(); return Convex{st}; } // 半平面交 // 排序增量法,复杂度 O(nlogn) // 输入与返回值都是用直线表示的半平面集合。返回为空表示无解 vector<Line> halfinter_get_lines (vector<Line> l, const point_t lim = 1e9) { const auto check = [] (const Line & a, const Line & b, const Line & c) { return a.toleft(b.inter(c)) < 0; }; // 无精度误差的方法,但注意取值范围会扩大到三次方 // const auto check = [] (const Line & a, const Line & b, const Line & c) // { // const Point p = a.v * (b.v ^ c.v), q = b.p * (b.v ^ c.v) + b.v * (c.v ^ (b.p - c.p)) - a.p * (b.v ^ c.v); // return p.toleft(q) < 0; // }; l.push_back({{lim, 0}, {0, 1}}), l.push_back({{-lim, 0}, {0, -1}}); l.push_back({{0, lim}, {-1, 0}}), l.push_back({{0, -lim}, {1, 0}}); sort(l.begin(), l.end(), [] (const Line & a, const Line & b) { if(a.v.toleft(b.v) == 0 && a.v * b.v >= -eps) return a.toleft(b.p) == -1; return argcmp() (a.v, b.v); }); deque<Line> q; for(size_t i = 0; i < l.size(); i ++ ) { if(i > 0 && l[i - 1].v.toleft(l[i].v) == 0 && l[i - 1].v * l[i].v >= -eps) continue; while(q.size() > 1 && check(l[i], q.back(), q[q.size() - 2])) q.pop_back(); while(q.size() > 1 && check(l[i], q[0], q[1])) q.pop_front(); if(q.size() && q.back().v.toleft(l[i].v) <= 0) return {}; q.push_back(l[i]); } while(q.size() > 1 && check(q[0], q.back(), q[q.size() - 2])) q.pop_back(); while(q.size() > 1 && check(q.back(), q[0], q[1])) q.pop_front(); return vector<Line>(q.begin(), q.end()); } // 输入是用直线表示的半平面集合,返回是半平面交在框架内形成的凸包。返回为空表示无解 Convex halfinter_get_convex (vector<Line> & l, const point_t lim = 1e9) { const auto lines = halfinter_get_lines(l, lim); Convex poly; poly.p.resize(lines.size()); if(!lines.size()) return poly; for(size_t i = 0; i < lines.size(); i ++ ) { const size_t j = (i == lines.size() - 1 ? 0 : i + 1); poly.p[i] = lines[i].inter(lines[j]); } // 如果重点不影响答案,则不需要去重 // poly.p.erase(unique(poly.p.begin(), poly.p.end()), poly.p.end()); // if(poly.p.front() == poly.p.back()) poly.p.pop_back(); return poly; } // 平面旋转 + 动态维护排名,解决平面旋转上关键事件更新答案的问题,复杂度 O(n^2 logn) // 以 (点集形成的最小最大三角形) 问题为例 // 最大三角形问题可以使用凸包与旋转卡壳做到 O(n^2) pair<point_t, point_t> minmax_triangle (vector<Point> p) { int n = p.size(); if(n <= 2) return {0, 0}; vector<int> rk(n), id(n); vector<pair<int, int>> vec; vec.reserve(n * n); auto cal = [&] (const int i, const int j) -> pair<point_t, point_t> { point_t mn = 1e18, mx = 0; int rkn = rk[i]; for(int k = max(0, rkn - 2); k <= min(n - 1, rkn + 2); k ++ ) if(k != rk[i] && k != rk[j]) mn = min(mn, abs( (p[i] - p[j]) ^ ( p[id[k]] - p[j] ) )); if(rk[i] != 0 && rk[j] != 0) mx = max(mx, abs( (p[i] - p[j]) ^ ( p[id[0]] - p[j] ) )); if(rk[i] != n - 1 && rk[j] != n - 1) mx = max(mx, abs( (p[i] - p[j]) ^ ( p[id[n - 1]] - p[j] ) )); return {mn, mx}; }; sort(p.begin(), p.end(), [] (const Point & a, const Point & b) { if(a.y != b.y) return a.y < b.y; return a.x > b.x; }); for(int i = 0; i < p.size(); i ++ ) { rk[i] = id[i] = i; for(int j = 0; j < p.size(); j ++ ) if(i != j) vec.push_back({i, j}); } sort(vec.begin(), vec.end(), [&] (const pair<int, int> & a, const pair<int, int> & b) { return argcmp() (p[a.second] - p[a.first], p[b.second] - p[b.first]); }); point_t minans = 1e18, maxans = 0; for(auto [i, j] : vec) { auto [mn, mx] = cal(i, j); minans = min(minans, mn), maxans = max(maxans, mx); swap(rk[i], rk[j]), swap(id[rk[i]], id[rk[j]]); } return {minans, maxans}; } // 判断多条线段是否有交点 // 扫描线,复杂度 O(nlogn) bool segs_is_inter (const vector<Segment> & segs) { if(!segs.size()) return false; using seq_t = tuple<point_t, int, Segment>; const auto seqcmp = [] (const seq_t & u, const seq_t & v) { const auto [u0, u1, u2] = u; const auto [v0, v1, v2] = v; if(abs(u0 - v0) <= eps) return make_pair(u1, u2) < make_pair(v1, v2); return u0 < v0 - eps; }; vector<seq_t> seq; for(auto seg : segs) { if(seg.a.x > seg.b.x + eps) swap(seg.a, seg.b); seq.push_back({seg.a.x, 0, seg}); seq.push_back({seg.b.x, 1, seg}); } sort(seq.begin(), seq.end(), seqcmp); point_t x_now; auto cmp = [&] (const Segment & u, const Segment & v) { if(abs(u.a.x - u.b.x) <= eps || abs(v.a.x - v.b.x) <= eps) return u.a.y < v.a.y - eps; return ((x_now - u.a.x) * (u.b.y - u.a.y) + u.a.y * (u.b.x - u.a.x)) * (v.b.x - v.a.x) < ((x_now - v.a.x) * (v.b.y - v.a.y) + v.a.y * (v.b.x - v.a.x)) * (u.b.x - u.a.x) - eps; }; multiset<Segment, decltype(cmp)> s{cmp}; for(const auto [x, o, seg] : seq) { x_now = x; const auto it = s.lower_bound(seg); if(o == 0){ if(it != s.end() && seg.is_inter(*it)) return 1; if(it != s.begin() && seg.is_inter(*prev(it))) return 1; s.insert(seg); }else{ if(next(it) != s.end() && it != s.begin() && (*prev(it)).is_inter(*next(it))) return 1; s.erase(it); } } return 0; } // 多边形面积并 // 轮廓积分,复杂度 O(n^2logn),n为边数 // ans[i] 表示被至少覆盖了 i+1 次的区域的面积 vector<long double> area_union (const vector<Polygon> & polys) { const size_t siz = polys.size(); vector<vector<pair<Point,Point>>> segs(siz); const auto check = [] (const Point & u, const Segment & e) {return !((u < e.a && u < e.b) || (u > e.a && u > e.b)); }; auto cut_edge = [&] (const Segment & e, const size_t i) { const Line le{e.a, e.b - e.a}; vector<pair<Point,int>> evt; evt.push_back({e.a, 0}); evt.push_back({e.b, 0}); for(size_t j = 0; j < polys.size(); j ++ ) { if(i == j) continue; const auto & pj = polys[j]; for(size_t k = 0; k < pj.p.size(); k ++ ) { const Segment s = {pj.p[k], pj.p[pj.nxt(k)]}; if(le.toleft(s.a) == 0 && le.toleft(s.b) == 0) { evt.push_back({s.a, 0}); evt.push_back({s.b, 0}); } else if(s.is_inter(le)) { const Line ls{s.a, s.b - s.a}; const Point u = le.inter(ls); if(le.toleft(s.a) < 0 && le.toleft(s.b) >= 0) evt.push_back({u, -1}); else if(le.toleft(s.a) >= 0 && le.toleft(s.b) < 0) evt.push_back({u, 1}); } } } sort(evt.begin(), evt.end()); if(e.a > e.b) reverse(evt.begin(), evt.end()); int sum = 0; for(size_t i = 0; i < evt.size(); i ++ ) { sum += evt[i].second; const Point u = evt[i].first, v = evt[i + 1].first; if(!(u == v) && check(u, e) && check(v, e)) segs[sum].push_back({u, v}); if(v == e.b) break; } }; for(size_t i = 0; i < polys.size(); i ++ ) { const auto & pi = polys[i]; for(size_t k = 0; k < pi.p.size(); k ++ ) { const Segment ei = {pi.p[k], pi.p[pi.nxt(k)]}; cut_edge(ei, i); } } vector<long double> ans(siz); for(size_t i = 0; i < siz; i ++ ) { long double sum = 0; sort(segs[i].begin(), segs[i].end()); int cnt = 0; for(size_t j = 0; j < segs[i].size(); j ++ ) { if(j > 0 && segs[i][j] == segs[i][j - 1]) segs[i + ( ++ cnt)].push_back(segs[i][j]); else cnt = 0, sum += segs[i][j].first ^ segs[i][j].second; } ans[i] = sum / 2; } return ans; } // 圆面积并 // 轮廓积分,复杂度 O(n^2logn) // ans[i] 表示被至少覆盖了 i+1 次的区域的面积 vector<long double> area_union (const vector<Circle> & circs) { const size_t siz = circs.size(); using arc_t = tuple<Point, long double, long double, long double>; vector<vector<arc_t>> arcs(siz); const auto eq = [] (const arc_t & u, const arc_t & v) { const auto [u1, u2, u3, u4] = u; const auto [v1, v2, v3, v4] = v; return u1 == v1 && abs(u2 - v2) <= eps && abs(u3 - v3) <= eps && abs(u4 - v4) <= eps; }; auto cut_circ = [&] (const Circle & ci, const size_t i) { vector<pair<long double,int>> evt; evt.push_back({-PI, 0}); evt.push_back({PI, 0}); int init = 0; for(size_t j = 0; j < circs.size(); j ++ ) { if(i == j) continue; const Circle & cj = circs[j]; if(ci.r < cj.r - eps && ci.relation(cj) >= 3) init ++ ; const auto inters = ci.inter(cj); if(inters.size() == 1) evt.push_back({atan2l((inters[0] - ci.c).y, (inters[0] - ci.c).x), 0}); if(inters.size() == 2) { const Point dl = inters[0] - ci.c, dr = inters[1] - ci.c; long double argl = atan2l(dl.y, dl.x), argr = atan2l(dr.y, dr.x); if(abs(argl + PI) <= eps) argl = PI; if(abs(argr + PI) <= eps) argr = PI; if(argl > argr + eps) { evt.push_back({argl, 1}); evt.push_back({PI, -1}); evt.push_back({-PI, 1}); evt.push_back({argr, -1}); }else { evt.push_back({argl, 1}); evt.push_back({argr, -1}); } } } sort(evt.begin(), evt.end()); int sum = init; for(size_t i = 0; i < evt.size(); i ++ ) { sum += evt[i].second; if(abs(evt[i].first - evt[i + 1].first) > eps) arcs[sum].push_back({ci.c, ci.r, evt[i].first, evt[i + 1].first}); if(abs(evt[i + 1].first - PI) <= eps) break; } }; const auto oint = [] (const arc_t & arc) { const auto [cc, cr, l, r] = arc; if(abs(r - l - PI - PI) <= eps) return 2.0l * PI * cr * cr; return cr * cr * (r - l) + cc.x * cr * (sin(r) - sin(l)) - cc.y * cr * (cos(r) - cos(l)); }; for(size_t i = 0; i < circs.size(); i ++ ) { const auto & ci = circs[i]; cut_circ(ci, i); } vector<long double> ans(siz); for(size_t i = 0; i < siz; i ++ ) { long double sum = 0; sort(arcs[i].begin(), arcs[i].end()); int cnt = 0; for(size_t j = 0; j < arcs[i].size(); j ++ ) { if(j > 0 && eq(arcs[i][j], arcs[i][j - 1])) arcs[i + ( ++ cnt)].push_back(arcs[i][j]); else cnt = 0, sum += oint(arcs[i][j]); } ans[i] = sum / 2; } return ans; } // 圆与多边形面积交 long double inter_area (const Circle & circ, const Polygon & poly) { const auto cal = [] (const Circle & circ, const Point & a, const Point & b) { if((a - circ.c).toleft(b - circ.c) == 0) return 0.0l; const auto ina = circ.is_in(a), inb = circ.is_in(b); const Line ab = {a, b - a}; if(ina && inb) return ((a - circ.c) ^ (b - circ.c)) / 2; if(ina && !inb) { const auto t = circ.inter(ab); const Point p = t.size() == 1 ? t[0] : t[1]; const long double ans = ((a - circ.c) ^ (p - circ.c)) / 2; const long double th = (p - circ.c).ang(b - circ.c); const long double d = circ.r * circ.r * th / 2; if((a - circ.c).toleft(b - circ.c) == 1) return ans + d; return ans - d; } if(!ina && inb) { const Point p = circ.inter(ab)[0]; const long double ans = ((p - circ.c) ^ (b - circ.c)) / 2; const long double th = (a - circ.c).ang(p - circ.c); const long double d = circ.r * circ.r * th / 2; if((a - circ.c).toleft(b - circ.c) == 1) return ans + d; return ans - d; } const auto p = circ.inter(ab); if(p.size() == 2 && Segment{a, b}.dis(circ.c) <= circ.r + eps) { const long double ans = ((p[0] - circ.c) ^ (p[1] - circ.c)) / 2; const long double th1 = (a - circ.c).ang(p[0] - circ.c), th2 = (b - circ.c).ang(p[1] - circ.c); const long double d1 = circ.r * circ.r * th1 / 2, d2 = circ.r * circ.r * th2 / 2; if((a - circ.c).toleft(b - circ.c) == 1) return ans + d1 + d2; return ans - d1 - d2; } const long double th = (a - circ.c).ang(b - circ.c); if((a - circ.c).toleft(b - circ.c) == 1) return circ.r * circ.r * th / 2; return -circ.r * circ.r * th / 2; }; long double ans = 0; for(size_t i = 0; i < poly.p.size(); i ++ ) { const Point a = poly.p[i], b = poly.p[poly.nxt(i)]; ans += cal(circ, a, b); } return ans; } // -------------------------------------------------------------------------- int n, cas; long double k; void solve() { cin >> k; Polygon poly; poly.p.resize(n); for(auto & t : poly.p) cin >> t.x >> t.y; Point a, b; cin >> a.x >> a.y >> b.x >> b.y; Point v = b - a, p1 = a + v * (1 / (1 - k)), p2 = a + v * (1 / (1 + k)); Circle cir = {(p1 + p2) / 2, p1.dis(p2) / 2}; cout << "Case " << ( ++ cas) << ": " << fixed << setprecision(10) << abs(inter_area(cir, poly)) << endl; } int main() { ios; while(cin >> n) solve(); return 0; }
C++(clang++ 11.0.1) 解法, 执行用时: 36ms, 内存消耗: 520K, 提交时间: 2022-09-28 21:55:37
#include<bits/stdc++.h> using namespace std; #define endl "\n" #define ff long double #define pb push_back const ff eps = 1e-8; const ff pi = acos(-1.0); int n, T; ff k; ff sqr(ff x) { return x * x; } int sgn(ff x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; return 1; } struct Point { ff x, y; Point(){} Point(ff x, ff y): x(x), y(y){} void input() { scanf("%Lf%Lf",&x,&y); } void print() { cout << fixed << setprecision(2) << x << " " << y << endl; } void output(int k) { cout << fixed << setprecision(k) << x << " " << y << endl; } bool operator == (const Point &b) const { return sgn(x - b.x) == 0 && sgn(y - b.y) == 0; } bool operator < (const Point &b) const { return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x; } Point operator + (const Point &b) const { return Point(x + b.x, y + b.y); } Point operator - (const Point &b) const { return Point(x - b.x, y - b.y); } Point operator * (const ff &k) const { return Point(x * k, y * k); } Point operator / (const ff &k) const { return Point(x / k, y / k); } ff operator ^ (const Point &b) const { return x * b.y - y * b.x; } //叉积 ff operator * (const Point &b) const { return x * b.x + y * b.y; } //点积 int toleft(const Point &a) const {const auto t = (*this) ^ a; return (t > eps) - (t < -eps); } // to-left 测试 ff len() { return hypot(x, y); } //返回长度 ff len2() { return x * x + y * y; } //返回长度的平方 ff distance(Point p) { return hypot(x - p.x, y - p.y); } //返回两点的距离 ff rad(Point a, Point b) { Point p = *this; return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p) * (b - p))); } Point trunc(ff r) { //化为长度为 r 的向量 ff l = len(); if(!sgn(l)) return *this; r /= l; return Point(x * r, y * r); } }; struct Line{ Point s, e; Line() {} Line(Point s, Point e):s(s), e(e){} void input() { s.input(); e.input(); } ff length(){ return s.distance(e); } //求线段长度 //点到直线的距离 double disPointToLine(Point p){ return fabs((p - s) ^ (e - s)) / length(); } //返回点 p 在直线上的投影 Point lineprog(Point p){ return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).len2())); } }; struct Circle { Point p; ff r; Circle(){} Circle(Point p, ff r):p(p), r(r){} void print() { p.print(); cout << r << endl; } int relation(Point v) { //点和圆的关系 ff dis = p.distance(v); if(sgn(dis - r) < 0) return 2; //圆内 else if(sgn(dis - r) == 0) return 1; //圆上 return 0; //圆外 } Circle(Point a, Point b, ff k) { //求阿波罗尼斯圆, 圆心为P, 其中 Pb = kPa (k < 1) ff D = (2.0 * sqr(k) * a.x - 2.0 * b.x) / (1.0 - sqr(k)); ff E = (2.0 * sqr(k) * a.y - 2.0 * b.y) / (1.0 - sqr(k)); ff F = (sqr(b.x) + sqr(b.y) - sqr(k) * (sqr(a.x) + sqr(a.y))) / ( 1.0 - sqr(k)); p = Point(-D * 0.5,-E * 0.5); r = sqrt(sqr(D) + sqr(E) - 4.0 * F) * 0.5; } int relationLine(Line v) { //直线和圆关系 圆心到直线距离与半径的关系 ff dis = v.disPointToLine(p); if(sgn(dis - r) < 0) return 2; else if(sgn(dis - r) == 0) return 1; return 0; } int pointCrossLine(Line v, Point &p1, Point &p2) { if(!(*this).relationLine(v)) return 0; Point a = v.lineprog(p); ff d = v.disPointToLine(p); d = sqrt(sqr(r) - sqr(d)); if(sgn(d) == 0) { p1 = a; p2 = a; return 1; } p1 = a + (v.e - v.s).trunc(d); p2 = a - (v.e - v.s).trunc(d); return 2; } ff areaTriangle(Point a, Point b) { if (sgn((p - a) ^ (p - b)) == 0) return 0.0; Point q[5]; int len = 0; q[len ++] = a; Line l(a, b); Point p1, p2; if (pointCrossLine(l, q[1], q[2]) == 2) { if (sgn((a - q[1]) * (b - q[1])) < 0) q[len ++] = q[1]; if (sgn((a - q[2]) * (b - q[2])) < 0) q[len ++] = q[2]; } q[len ++] = b; if (len == 4 && sgn((q[0] - q[1]) * (q[2] - q[1])) > 0) swap(q[1], q[2]); double res = 0; for (int i = 0; i < len - 1; i++) { if (relation(q[i]) == 0 || relation(q[i + 1]) == 0) { double arg = p.rad(q[i], q[i + 1]); res += r * r * arg / 2.0; } else { res += fabs((q[i] - p) ^ (q[i + 1] - p)) / 2.0; } } return res; } }; struct Polygon { vector<Point> p; Polygon() {} Polygon(vector<Point> p):p(p){} ff areaCircle(Circle c) { ff ans = 0; int n = p.size(); for (int i = 0; i < n; i ++) { int j = (i + 1) % n; int f = sgn((p[j] - c.p) ^ (p[i] - c.p)); if (f != 0) { ans += f * c.areaTriangle(p[i], p[j]); } } return fabs(ans); } }; void solve() { while(cin >> n >> k) { printf("Case %d: ", ++ T); vector<Point> vec; for(int i = 1; i <= n; i ++) { Point p; p.input(); vec.pb(p); } Point a, b; a.input(); b.input(); Polygon poly = Polygon(vec); Circle c = Circle(a, b, k); ff ans = poly.areaCircle(c); printf("%.10Lf\n", ans); } } signed main() { int t = 1; while(t --) solve(); }