NC234015. Jungle Outpost
描述
输入描述
The first line of the input file contains a single integer — the number of watchtowers.
The next lines of the input file contain the Cartesian coordinates of watchtowers, one pair of coordinates per line. Coordinates are integer and do not exceed by absolute value. Towers are listed in the order of traversal of their convex hull in clockwise direction.
输出描述
Write to the output file the number of watchtowers the enemy has to blow up to compromise headquarters protection if the headquarters are placed optimally.
示例1
输入:
3 0 0 50 50 60 10
输出:
1
示例2
输入:
5 0 0 0 10 10 20 20 10 25 0
输出:
2
C++(g++ 7.5.0) 解法, 执行用时: 375ms, 内存消耗: 12504K, 提交时间: 2022-09-04 21:47:04
#include <bits/stdc++.h> using namespace std; using ll = long long; using PII = pair<int, int>; using _T = __int128; // 全局数据类型,可修改为 long long 等 constexpr _T eps = 0; constexpr long double PI = 3.1415926535897932384l; // 点与向量 template<typename T> struct point { T x,y; bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);} bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;} bool operator>(const point &a) const {return !(*this<a || *this==a);} point operator+(const point &a) const {return {x+a.x,y+a.y};} point operator-(const point &a) const {return {x-a.x,y-a.y};} point operator-() const {return {-x,-y};} point operator*(const T k) const {return {k*x,k*y};} point operator/(const T k) const {return {x/k,y/k};} T operator*(const point &a) const {return x*a.x+y*a.y;} // 点积 T operator^(const point &a) const {return x*a.y-y*a.x;} // 叉积,注意优先级 int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);} // to-left 测试 T len2() const {return (*this)*(*this);} // 向量长度的平方 T dis2(const point &a) const {return (a-(*this)).len2();} // 两点距离的平方 // 涉及浮点数 long double len() const {return sqrtl(len2());} // 向量长度 long double dis(const point &a) const {return sqrtl(dis2(a));} // 两点距离 long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));} // 向量夹角 point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};} // 逆时针旋转(给定角度) point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};} // 逆时针旋转(给定角度的正弦与余弦) }; using Point = point<_T>; struct argcmp { bool operator()(const Point &a,const Point &b) const { const auto quad = [](const Point &a) { if (a.y < -eps) return 1; if (a.y > eps) return 4; if (a.x < -eps) return 5; if (a.x > eps) return 3; return 2; }; const int qa = quad(a) ,qb = quad(b); if (qa != qb) return qa < qb; const auto t = a ^ b; // if (abs(t)<=eps) return a*a<b*b-eps; // 不同长度的向量需要分开 return t > eps; } }; // 直线 template<typename T> struct line { point<T> p,v; // p 为直线上一点,v 为方向向量 bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;} int toleft(const point<T> &a) const {return v.toleft(a-p);} // to-left 测试 bool operator<(const line &a) const // 半平面交算法定义的排序 { if ((v^a.v)>=-eps && (v^a.v)<=eps && v*a.v>=-eps) return toleft(a.p)==-1; return argcmp()(v,a.v); } // 涉及浮点数 point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));} // 直线交点 long double dis(const point<T> &a) const {return abs(v^(a-p))/v.len();} // 点到直线距离 point<T> proj(const point<T> &a) const {return p+v*((v*(a-p))/(v*v));} // 点在直线上的投影 }; using Line=line<_T>; // 线段 template<typename T> struct segment { point<T> a,b; // 判定性函数建议在整数域使用 // 判断点是否在线段上 // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上 int is_on(const point<T> &p) const { if (p==a || p==b) return -1; return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps; } // 判断线段直线是否相交 // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交 int is_inter(const line<T> &l) const { if (l.toleft(a)==0 || l.toleft(b)==0) return -1; return l.toleft(a)!=l.toleft(b); } // 判断两线段是否相交 // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交 int is_inter(const segment<T> &s) const { if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1; const line<T> l{a,b-a},ls{s.a,s.b-s.a}; return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1; } // 点到线段距离 long double dis(const point<T> &p) const { if ((p-a)*(b-a)<-eps || (p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b)); const line<T> l{a,b-a}; return l.dis(p); } // 两线段间距离 long double dis(const segment<T> &s) const { if (is_inter(s)) return 0; return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)}); } }; using Segment=segment<_T>; // 多边形 template<typename T> struct polygon { vector<point<T>> p; // 以逆时针顺序存储 size_t nxt(const size_t i) const {return i==p.size()-1?0:i+1;} size_t pre(const size_t i) const {return i==0?p.size()-1:i-1;} // 回转数 // 返回值第一项表示点是否在多边形边上 // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内 pair<bool,int> winding(const point<T> &a) const { int cnt=0; for (size_t i=0;i<p.size();i++) { const point<T> u=p[i],v=p[nxt(i)]; if (abs((a-u)^(a-v))<=eps && (a-u)*(a-v)<=eps) return {true,0}; if (abs(u.y-v.y)<=eps) continue; const Line uv={u,v-u}; if (u.y<v.y-eps && uv.toleft(a)<=0) continue; if (u.y>v.y+eps && uv.toleft(a)>=0) continue; if (u.y<a.y-eps && v.y>=a.y-eps) cnt++; if (u.y>=a.y-eps && v.y<a.y-eps) cnt--; } return {false,cnt}; } // 多边形面积的两倍 // 可用于判断点的存储顺序是顺时针或逆时针 T area() const { T sum=0; for (size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)]; return sum; } // 多边形的周长 long double circ() const { long double sum=0; for (size_t i=0;i<p.size();i++) sum+=p[i].dis(p[nxt(i)]); return sum; } }; using Polygon=polygon<_T>; //凸多边形 template<typename T> struct convex: polygon<T> { // 闵可夫斯基和 convex operator+(const convex &c) const { const auto &p=this->p; vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size()); vector<point<T>> res; res.reserve(p.size()+c.p.size()); const auto cmp=[](const Segment &u,const Segment &v) {return argcmp()(u.b-u.a,v.b-v.a);}; for (size_t i=0;i<p.size();i++) e1[i]={p[i],p[this->nxt(i)]}; for (size_t i=0;i<c.p.size();i++) e2[i]={c.p[i],c.p[c.nxt(i)]}; rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end()); rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end()); merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp); const auto check=[](const vector<point<T>> &res,const point<T> &u) { const auto back1=res.back(),back2=*prev(res.end(),2); return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps; }; auto u=e1[0].a+e2[0].a; for (const auto &v:edge) { while (res.size()>1 && check(res,u)) res.pop_back(); res.push_back(u); u=u+v.b-v.a; } if (res.size()>1 && check(res,res[0])) res.pop_back(); return {res}; } // 旋转卡壳 // func 为更新答案的函数,可以根据题目调整位置 template<typename F> void rotcaliper(const F &func) const { const auto &p=this->p; const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w){return (w-u)^(w-v);}; for (size_t i=0,j=1;i<p.size();i++) { const auto nxti=this->nxt(i); func(p[i],p[nxti],p[j]); while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti])) { j=this->nxt(j); func(p[i],p[nxti],p[j]); } } } // 凸多边形的直径的平方 T diameter2() const { const auto &p=this->p; if (p.size()==1) return 0; if (p.size()==2) return p[0].dis2(p[1]); T ans=0; auto func=[&](const point<T> &u,const point<T> &v,const point<T> &w){ans=max({ans,w.dis2(u),w.dis2(v)});}; rotcaliper(func); return ans; } // 判断点是否在凸多边形内 // 复杂度 O(logn) // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内 int is_in(const point<T> &a) const { const auto &p=this->p; if (p.size()==1) return a==p[0]?-1:0; if (p.size()==2) return segment<T>{p[0],p[1]}.is_on(a)?-1:0; if (a==p[0]) return -1; if ((p[1]-p[0]).toleft(a-p[0])==-1 || (p.back()-p[0]).toleft(a-p[0])==1) return 0; const auto cmp=[&](const Point &u,const Point &v){return (u-p[0]).toleft(v-p[0])==1;}; const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin(); if (i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0; if (i==p.size()-1 && segment<T>{p[0],p[i]}.is_on(a)) return -1; if (segment<T>{p[i-1],p[i]}.is_on(a)) return -1; return (p[i]-p[i-1]).toleft(a-p[i-1])>0; } // 凸多边形关于某一方向的极点 // 复杂度 O(logn) // 参考资料:https://codeforces.com/blog/entry/48868 template<typename F> size_t extreme(const F &dir) const { const auto &p=this->p; const auto check=[&](const size_t i){return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;}; const auto dir0=dir(p[0]); const auto check0=check(0); if (!check0 && check(p.size()-1)) return 0; const auto cmp=[&](const Point &v) { const size_t vi=&v-p.data(); if (vi==0) return 1; const auto checkv=check(vi); const auto t=dir0.toleft(v-p[0]); if (vi==1 && checkv==check0 && dir0.toleft(v-p[0])==0) return 1; return checkv^(checkv==check0 && t<=0); }; return partition_point(p.begin(),p.end(),cmp)-p.begin(); } // 过凸多边形外一点求凸多边形的切线,返回切点下标 // 复杂度 O(logn) // 必须保证点在多边形外 pair<size_t,size_t> tangent(const point<T> &a) const { const size_t i=extreme([&](const point<T> &u){return u-a;}); const size_t j=extreme([&](const point<T> &u){return a-u;}); return {i,j}; } // 求平行于给定直线的凸多边形的切线,返回切点下标 // 复杂度 O(logn) pair<size_t,size_t> tangent(const line<T> &a) const { const size_t i=extreme([&](...){return a.v;}); const size_t j=extreme([&](...){return -a.v;}); return {i,j}; } }; using Convex=convex<_T>; // 半平面交 // 排序增量法,复杂度 O(nlogn) // 输入与返回值都是用直线表示的半平面集合 vector<Line> halfinter(vector<Line> l, const _T lim=1e9) { // const auto check=[](const Line &a,const Line &b,const Line &c){return a.toleft(b.inter(c))<0;}; // 无精度误差的方法,但注意取值范围会扩大到三次方 const auto check=[](const Line &a,const Line &b,const Line &c) { Point p=a.v*(b.v^c.v),q=b.p*(b.v^c.v)+b.v*(c.v^(b.p-c.p))-a.p*(b.v^c.v); return p.toleft(q)<=0; }; l.push_back({{-lim,0},{0,-1}}); l.push_back({{0,-lim},{1,0}}); l.push_back({{lim,0},{0,1}}); l.push_back({{0,lim},{-1,0}}); sort(l.begin(),l.end()); deque<Line> q; for (size_t i=0;i<l.size();i++) { if (i>0 && l[i-1].v.toleft(l[i].v)==0 && l[i-1].v*l[i].v>eps) continue; while (q.size()>1 && check(l[i],q.back(),q[q.size()-2])) q.pop_back(); while (q.size()>1 && check(l[i],q[0],q[1])) q.pop_front(); if (!q.empty() && q.back().v.toleft(l[i].v)<=0) return vector<Line>(); q.push_back(l[i]); } while (q.size()>1 && check(q[0],q.back(),q[q.size()-2])) q.pop_back(); while (q.size()>1 && check(q.back(),q[0],q[1])) q.pop_front(); return vector<Line>(q.begin(),q.end()); } int main() { #ifdef LOCAL freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vector<Point> a(n); for (int i = 0; i < n; i++) { int x, y; cin >> x >> y; a[i] = {x, y}; } reverse(a.begin(), a.end()); auto check = [&](int x) { vector<Line> l; for (int i = 0, j = x + 1; i < n; i++, j++) { if (j == n) j = 0; l.push_back({a[i], a[j] - a[i]}); } l = halfinter(l); return l.empty(); }; int l = 1, r = n - 2; while (l < r) { int mid = (l + r) >> 1; if (check(mid)) r = mid; else l = mid + 1; } cout << l << '\n'; return 0; }
C++(clang++ 11.0.1) 解法, 执行用时: 349ms, 内存消耗: 11696K, 提交时间: 2023-02-21 10:17:55
#include <bits/stdc++.h> using namespace std; using point_t=double ; //全局数据类型,可修改为 long long 等 constexpr point_t eps=1e-8; constexpr long double PI=3.1415926535897932384l; // 点与向量 template<typename T> struct point { T x,y; bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);} bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;} bool operator>(const point &a) const {return !(*this<a || *this==a);} point operator+(const point &a) const {return {x+a.x,y+a.y};} point operator-(const point &a) const {return {x-a.x,y-a.y};} point operator-() const {return {-x,-y};} point operator*(const T k) const {return {k*x,k*y};} point operator/(const T k) const {return {x/k,y/k};} T operator*(const point &a) const {return x*a.x+y*a.y;} // 点积 T operator^(const point &a) const {return x*a.y-y*a.x;} // 叉积,注意优先级 int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);} // to-left 测试,>0 左侧,=0 直线上,<0 右侧 T len2() const {return (*this)*(*this);} // 向量长度的平方 T dis2(const point &a) const {return (a-(*this)).len2();} // 两点距离的平方 // 涉及浮点数 long double len() const {return sqrtl(len2());} // 向量长度 long double dis(const point &a) const {return sqrtl(dis2(a));} // 两点距离 long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));} // 向量夹角 point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};} // 逆时针旋转(给定角度) point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};} // 逆时针旋转(给定角度的正弦与余弦) }; using Point=point<point_t>; // 极角排序 struct argcmp { bool operator()(const Point &a,const Point &b) const { const auto quad=[](const Point &a) { if (a.y<-eps) return 1; if (a.y>eps) return 4; if (a.x<-eps) return 5; if (a.x>eps) return 3; return 2; }; const int qa=quad(a),qb=quad(b); if (qa!=qb) return qa<qb; const auto t=a^b; // if (abs(t)<=eps) return a*a<b*b-eps; // 不同长度的向量需要分开 return t>eps; } }; // 直线 template<typename T> struct line { point<T> p,v; // p 为直线上一点,v 为方向向量 bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;} int toleft(const point<T> &a) const {return v.toleft(a-p);} // to-left 测试 bool operator<(const line &a) const // 半平面交算法定义的排序 { if (abs(v^a.v)<=eps && v*a.v>=-eps) return toleft(a.p)==-1; return argcmp()(v,a.v); } // 涉及浮点数 long double dis(const point<T> &a) const {return abs(v^(a-p))/v.len();} // 点到直线距离 point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));} // 直线交点 }; using Line=line<point_t>; //线段 template<typename T> struct segment { point<T> a,b; // 判定性函数建议在整数域使用 // 判断点是否在线段上 // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上 int is_on(const point<T> &p) const { if (p==a || p==b) return -1; return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps; } // 判断两线段是否相交 // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交 int is_inter(const segment<T> &s) const { if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1; const line<T> l{a,b-a},ls{s.a,s.b-s.a}; return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1; } }; using Segment=segment<point_t>; // 半平面交 // 排序增量法,复杂度 O(nlogn) // 输入与返回值都是用直线表示的半平面集合 vector<Line> halfinter(vector<Line> l, const point_t lim=1e9) { const auto check=[](const Line &a,const Line &b,const Line &c){return a.toleft(b.inter(c))<0;}; // 无精度误差的方法,但注意取值范围会扩大到三次方 /*const auto check=[](const Line &a,const Line &b,const Line &c) { const Point p=a.v*(b.v^c.v),q=b.p*(b.v^c.v)+b.v*(c.v^(b.p-c.p))-a.p*(b.v^c.v); return p.toleft(q)<0; };*/ l.push_back({{-lim,0},{0,-1}}); l.push_back({{0,-lim},{1,0}}); l.push_back({{lim,0},{0,1}}); l.push_back({{0,lim},{-1,0}}); sort(l.begin(),l.end()); deque<Line> q; for (size_t i=0;i<l.size();i++) { if (i>0 && l[i-1].v.toleft(l[i].v)==0 && l[i-1].v*l[i].v>eps) continue; while (q.size()>1 && check(l[i],q.back(),q[q.size()-2])) q.pop_back(); while (q.size()>1 && check(l[i],q[0],q[1])) q.pop_front(); if (!q.empty() && q.back().v.toleft(l[i].v)<=0) return vector<Line>(); q.push_back(l[i]); } while (q.size()>1 && check(q[0],q.back(),q[q.size()-2])) q.pop_back(); while (q.size()>1 && check(q.back(),q[0],q[1])) q.pop_front(); return vector<Line>(q.begin(),q.end()); } #define ll long long void solve() { int n ; scanf("%d",&n) ; vector<Point> vec(n) ; for(int i=0,x,y;i<n;++i) { scanf("%d%d",&x,&y) ; vec[n - i - 1] = {(double)x, (double)y} ; } auto check = [&](int mid) { vector<Line> lin ; for(int i=0;i<n;++i) { int nxti = (i + mid - 1) % n ; lin.push_back({vec[i], vec[(i + 1) % n] - vec[i]}) ; lin.push_back({vec[nxti], vec[i] - vec[nxti]}) ; } vector<Line> res = halfinter(lin) ; vector<Point> tubao ; int k = (int)res.size() ; for(int i=0;i<k;++i) tubao.push_back(res[i].inter(res[(i + 1) % k])) ; double sum = 0 ; for(int i=0;i<k;++i) sum += tubao[i] ^ tubao[(i + 1) % k] ; return sum > eps ; } ; int l = 1, r = n - 2 ; while(l < r) { int mid = (l + r) >> 1 ; if(check(n - mid)) l = mid + 1 ; else r = mid ; } printf("%d\n", l) ; } int main() { int T=1 ; //scanf("%d",&T) ; while(T--) solve() ; return 0 ; }