列表

详情


NC222485. [USACOOpen2020P]Exercise

描述



English (en)
Farmer John has come up with a new morning exercise routine for the cows (again)!
As before, Farmer John's N cows (1≤N≤7500) are standing in a line. The i-th cow from the left has label i for each 1≤i≤N. He tells them to repeat the following step until the cows are in the same order as when they started.

For example, if A=(1,2,3,4,5) then the cows perform one step and immediately return to the same order. If A=(2,3,1,5,4), then the cows perform six steps before returning to the original order. The order of the cows from left to right after each step is as follows:

Compute the product of the numbers of steps needed over all N! possible permutations A of length N.

As this number may be very large, output the answer modulo M (108≤M≤109+7, M is prime).

Contestants using C++ may find the following code from KACTL helpful. Known as the Barrett reduction, it allows you to compute a%b several times faster than usual, where b>1 is constant but not known at compile time. (we are not aware of such an optimization for Java, unfortunately).

#include <bits/stdc++.h>
using namespace std;

typedef unsigned long long ull;
typedef __uint128_t L;
struct FastMod {
ull b, m;
FastMod(ull b) : b(b), m(ull((L(1) << 64) / b)) {}
ull reduce(ull a) {
ull q = (ull)((L(m) * a) >> 64);
ull r = a - q * b; // can be proven that 0 <= r < 2*b
return r >= b ? r - b : r;
}
};
FastMod F(2);

int main() {
int M = 1000000007; F = FastMod(M);
ull x = 10ULL*M+3; 
cout << x << " " << F.reduce(x) << "\n"; // 10000000073 3
}

输入描述

The first line contains N and M.

输出描述

A single integer.

示例1

输入:

5 1000000007

输出:

369329541

说明:

For each 1≤i≤N, the i-th element of the following array is the number of permutations that cause the cows to take i steps: [1,25,20,30,24,20]. The answer is 11⋅225⋅320⋅430⋅524⋅620≡369329541(mod109+7).

Note: This problem has an expanded memory limit of 512 MB.

原站题解

上次编辑到这里,代码来自缓存 点击恢复默认模板

上一题