列表

详情


NC222462. [USACOJan2020G]TimeisMooney

描述

Bessie is conducting a business trip in Bovinia, where there are N (2≤N≤1000) cities labeled 1…N connected by M (1≤M≤2000) one-way roads. Every time Bessie visits city i, Bessie earns mi moonies (0≤mi≤1000). Starting at city 1 Bessie wants to visit cities to make as much mooney as she can, ending back at city 1. To avoid confusion, m1=0.
Mooving between two cities via a road takes one day. Preparing for the trip is expensive; it costs C⋅T2 moonies to travel for T days (1≤C≤1000).

What is the maximum amount of moonies Bessie can make in one trip? Note that it may be optimal for Bessie to visit no cities aside from city 1, in which case the answer would be zero.

输入描述

The first line contains three integers N, M, and C.
The second line contains the N integers m1,m2,…mN.

The next M lines each contain two space-separated integers a and b (a≠b) denoting a one-way road from city a to city b.

输出描述

A single line with the answer.

示例1

输入:

3 3 1
0 10 20
1 2
2 3
3 1

输出:

24

说明:

The optimal trip is 1→2→3→1→2→3→1. Bessie makes 10+20+10+20−1⋅62=24 moonies in total.

原站题解

上次编辑到这里,代码来自缓存 点击恢复默认模板

C++ 解法, 执行用时: 9ms, 内存消耗: 444K, 提交时间: 2021-11-10 12:24:55

#include <bits/stdc++.h>
using namespace std;
#define _for(i, a, b) for (int i = (a); i < (int)(b); ++i)
typedef long long LL;
const int NN = 1004;
struct Edge {
  int u, v;
};
LL D[2][NN];
int main() {
  ios::sync_with_stdio(false), cin.tie(0);
  LL N, M, C;
  cin >> N >> M >> C;
  vector<int> V(N + 1);
  vector<Edge> E(M);
  _for(i, 1, N + 1) cin >> V[i];
  _for(i, 0, M) cin >> E[i].u >> E[i].v;
  memset(D, -1, sizeof D), D[0][1] = 0;
  LL ans = 0;
  for (int t = 1; t <= NN; t++) {
    int p = t % 2;
    memset(D[p], -1, sizeof D[p]);
    for (auto &e : E)
      if (D[1 - p][e.u] >= 0)
        D[p][e.v] = max(D[p][e.v], D[1 - p][e.u] + V[e.v]);
    ans = max(ans, D[p][1] - C * t * t);
  }
  cout << ans << endl;
}

上一题