NC17669. The number of circuits
描述
输入描述
The first and only line contains two integers, which are k and n.1 <= k <= 72k+1 <= n <= 109
输出描述
The first and only line contains the answer.
示例1
输入:
2 5
输出:
11
说明:
The answer is not 22.示例2
输入:
3 8
输出:
278528
说明:
Try a brute force search...C++14(g++5.4) 解法, 执行用时: 373ms, 内存消耗: 16480K, 提交时间: 2019-02-18 23:45:12
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head namespace linear_seq { const int N=10010; ll res[N],base[N],_c[N],_md[N]; vector<int> Md; void mul(ll *a,ll *b,int k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (int i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("SIZE %d\n",SZ(b)); ll ans=0,pnt=0; int k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (int p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); int L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } int gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; int a[2020][2020]; ll det(int n) { ll ans = 1; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { while (a[j][i] != 0) { int u = a[i][i] / a[j][i]; for (int k = 0; k < n; k++) { int t = (a[i][k] - (ll)a[j][k] * u % mod + mod) % mod; a[i][k] = a[j][k]; a[j][k] = t; } ans = -ans; } } ans = ans * a[i][i] % mod; } if (ans < 0) { ans += mod; } return ans; } ll work(int k, int n) { //构造矩阵 计算点数为n的欧拉回路个数 memset(a, 0, sizeof a); for (int i = 0; i < n; i++) { a[i][i] = k; for (int j = 1; j <= k; j++) { a[i][(i + j) % n] = -1; } } ll t = 1; for (int i = 1; i < k; i++) { //度数-1的阶乘 t = t * i % mod; } return (ll)det(n - 1) * powmod(t, n) % mod; // 每个点的度数都一样 所以直接快速幂。 } int main() { int k; ll n; cin >> k >> n; vector<int> a; for (int i = 2 * k + 1; i <= (1 << k)+ 2 * k + 1; i++) { //为什么是1<<k这么多项 也也不知道 题解说的。。。 正常写就在不超时的情况下尽量写大点呗 a.push_back(work(k, i)); } cout << linear_seq::gao(a, n - (2 * k + 1)) << endl; return 0; }
C++11(clang++ 3.9) 解法, 执行用时: 121ms, 内存消耗: 736K, 提交时间: 2018-08-20 18:53:19
#include<bits/stdc++.h> using namespace std; #define fi first #define se second #define mp make_pair #define pb push_back #define rep(i, a, b) for(int i=(a); i<(b); i++) #define per(i, a, b) for(int i=(b)-1; i>=(a); i--) #define sz(a) (int)a.size() #define de(a) cout << #a << " = " << a << endl #define dd(a) cout << #a << " = " << a << " " #define all(a) a.begin(), a.end() #define endl "\n" typedef long long ll; typedef pair<int, int> pii; typedef vector<int> vi; //--- const int N = 222, P = 1e9+7; int add(int a, int b) { if((a += b) >= P) a -= P; return a; } int sub(int a, int b) { if((a -= b) < 0) a += P; return a; } int mul(int a, int b) { return 1ll * a * b % P; } int kpow(int a, int b) { int r = 1; while(b) { if(b & 1) r = mul(r, a); a = mul(a, a); b >>= 1; } return r; } vi BM(vi s) { vi C(1, 1), B(1, 1); int L = 0, m = 1, b = 1; rep(n, 0, sz(s)) { ll d = 0; rep(i, 0, L+1) (d += 1ll * C[i] * s[n-i]) %= P; if(d == 0) ++m; else { vi T = C; ll c = P - d * kpow(b, P - 2) % P; while(sz(C) < sz(B) + m) C.pb(0); rep(i, 0, sz(B)) C[i + m] = add(C[i + m], mul(c, B[i])); if(2 * L <= n) { L = n + 1 - L, B = T, b = d, m = 1; } else { ++m; } } } reverse(all(C)); rep(i, 0, sz(C)) C[i] = P - C[i]; return vi(C.begin(), C.end() - 1); } int linear_recurrence(ll n, int m, vi a, vi c) { vector<ll> v(m, 0), u(m<<1, 0); v[0] = 1; for(ll x = 0, W = n ? 1ll<<(63 - __builtin_clzll(n)) : 0; W; W >>= 1, x <<= 1) { fill(all(u), 0); int b = !!(n & W); if(b) x++; if(x < m) u[x] = 1; else { rep(i, 0, m) rep(j, 0, m) (u[i + b + j] += v[i] * v[j]) %= P; per(i, m, 2*m) rep(j, 0, m) (u[i - m + j] += c[j] * u[i]) %= P; } copy(u.begin(), u.begin() + m, v.begin()); } ll ans = 0; rep(i, 0, m) (ans += v[i] * a[i]) %= P; return ans; } namespace S { int n; int a[N][N]; int det() { int ans = 1; rep(i, 1, n) { rep(j, i+1, n) while(a[j][i]) { int t = a[i][i] / a[j][i]; rep(k, i, n) a[i][k] = sub(a[i][k], mul(a[j][k], t)); rep(k, i, n) swap(a[i][k], a[j][k]); ans = P - ans; } if(a[i][i] == 0) return 0; ans = mul(ans, a[i][i]); } return ans; } int solve(int k, int n) { memset(a, 0, sizeof(a)); rep(i, 0, n) { a[i][i] = k; rep(j, 1, k+1) a[i][(i+j)%n] = P-1; } S::n = n; return det(); } } int len; vi s; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); int k, n; cin >> k >> n; rep(i, 2*k+1, N) s.pb(S::solve(k, i)); vi T = BM(s); int ans = linear_recurrence(n - 2 * k - 1, sz(T), s, T); int res = 1; rep(i, 1, k) res = mul(res, i); ans = mul(ans, kpow(res, n)); cout << ans << endl; return 0; }