NC15888. Largest Circle
描述
Yay! Small Small Blue finally managed to buy a tiny plot of land just about 10 kilometers from Shanghai Bund. Only... only it was so expensive that he is no more able to afford building a house there. So he decide to go for a swimming pool. It should have the form of circle, and be as big as possible inside his plot. Having carefully measured the border of his plot, he know now that it is a convex N-gon.
What is the largest possible radius of a circular pool in it?
输入描述
There are multiple test cases in the input. There are at most 25 groups.
The first line of each case contains an integer N, 3≤N≤15000. The next N lines contain two integers each, xi and yi, not exceeding 107 by absolute value — the coordinates of the vertices of the plot (a convex polygon) in the counter-clockwise direction. No three vertices lie on the same line.
输出描述
For each test case, output the sought radius. Absolute or relative difference between real answer and your solution should be less than 10-6.
示例1
输入:
4 0 0 10000 0 10000 10000 0 10000 3 0 0 10000 0 7000 1000 6 0 40 100 20 250 40 250 70 100 90 0 70 3 0 0 10000 10000 5000 5001
输出:
5000.0000000000 494.2336408886 34.5429484627 0.3535533897
C++11(clang++ 3.9) 解法, 执行用时: 99ms, 内存消耗: 26744K, 提交时间: 2018-05-27 14:18:27
#include<bits/stdc++.h> using namespace std; const int maxn=20000; const double eps=1e-8; struct Point { double x,y; Point(double x=0,double y=0):x(x),y(y) {} }; typedef Point Vector; struct DLine { Point P; Vector v; double ang; DLine() {} DLine(Point P,Vector v):P(P),v(v) { ang=atan2(v.y,v.x); } bool operator < (const DLine& L) const { return ang<L.ang; } }; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); } Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); } Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); } int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; } bool operator == (const Point& a,const Point& b) { return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; } double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A,A)); } double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } Vector Normal(Vector A)//向量的单位法线,即左转90度 { double L=Length(A); return Vector(-A.y/L,A.x/L); } bool OnLeft(DLine L,Point p) { return Cross(L.v,p-L.P)>0; } Point GetIntersection(DLine a,DLine b) { Vector u=a.P-b.P; double t=Cross(b.v,u)/Cross(a.v,b.v); return a.P+a.v*t; } int HalfPlaneIntersection(DLine* L,int n){ sort(L,L+n); int first,last; Point *p=new Point[n]; DLine *q=new DLine[n]; q[first=last=0]=L[0]; for(int i=1; i<n; i++) { while(first<last && !OnLeft(L[i],p[last-1])) last--; while(first<last && !OnLeft(L[i],p[first])) first++; q[++last]=L[i]; if(fabs(Cross(q[last].v,q[last-1].v))<eps) { last--; if(OnLeft(q[last],L[i].P)) q[last]=L[i]; } if(first<last) p[last-1]=GetIntersection(q[last-1],q[last]); } while(first<last && !OnLeft(q[first],p[last-1])) last--; if(last-first <= 1) return 0; p[last]=GetIntersection(q[last],q[first]); return (last-first+1); } int n; Point p[maxn]; DLine l[maxn]; Vector v[maxn],v2[maxn]; void solve() { double left=0,right=10000;//二分 while(right-left>1e-6) { double mid=left+(right-left)/2; for(int i=0; i<n; i++) l[i]=DLine(p[i]+v2[i]*mid,v[i]); int m=HalfPlaneIntersection(l,n); if(!m) right=mid; else left=mid; } cout<<fixed<<setprecision(10)<<left<<endl; //printf("%.6lf\n",left); } int main() { // freopen("in.cpp","r",stdin); while((cin>>n) && n) { for(int i=0; i<n; i++) //scanf("%lf%lf",&p[i].x,&p[i].y); cin>>p[i].x>>p[i].y; for(int i=0; i<n; i++) { v[i]=p[(i+1)%n]-p[i]; v2[i]=Normal(v[i]); } solve(); } return 0; }
C++14(g++5.4) 解法, 执行用时: 207ms, 内存消耗: 23904K, 提交时间: 2018-05-27 13:32:21
#include<cstdio> #include<cmath> #include<algorithm> #define MAXN 150000 using namespace std; struct poi { double x,y; poi(double x = 0,double y = 0) :x(x),y(y) {} }pos[MAXN],a[MAXN],out[MAXN],v1[MAXN],v2[MAXN]; typedef poi vec; vec operator +(vec A,vec B) {return vec(A.x+B.x, A.y+B.y);} vec operator -(vec A,vec B) {return vec(A.x-B.x, A.y-B.y);} vec operator *(vec A,double p) {return vec(A.x*p, A.y*p);} const double eps = 1e-7; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x>0?1:-1; } bool operator <(vec A, vec B) { if(A.x == B.x) return A.y < B.y; else return A.x < B.x; } double cross(vec A,vec B) {return A.x*B.y - A.y*B.x;} double dot(vec A,vec B) {return A.x*B.x + A.y*B.y;} double length(vec A) {return sqrt(dot(A,A));} vec normal(vec A) {double L = length(A); return vec(-A.y/L, A.x/L);} struct Line { poi p; vec v; double ang; Line(){} Line(poi p,vec v) :p(p),v(v) {ang = atan2(v.y,v.x);} bool operator <(const Line &b)const{return ang < b.ang;} }L[MAXN],Q[MAXN]; bool Onleft(Line A,poi p) {return cross(A.v, p-A.p) > 0;} poi GetLineIntersection(Line A,Line B) { double t = cross(B.v, A.p-B.p) /cross(A.v, B.v); return A.p + A.v*t; } int HalfplaneIntersection(int n) { sort(L,L+n); int head = 0,tail = 0; Q[0] = L[0]; for(int i = 0; i < n; i++) { while(head < tail&& !Onleft(L[i], a[tail-1])) --tail; while(head < tail&& !Onleft(L[i], a[head])) ++head; Q[++tail] = L[i]; if(fabs(cross(Q[tail].v,Q[tail-1].v)) < eps){ tail--; if(Onleft(Q[tail], L[i].p)) Q[tail] = L[i]; } if(head < tail) a[tail-1] = GetLineIntersection(Q[tail], Q[tail-1]); } while(head < tail&& !Onleft(Q[head], a[tail-1])) --tail; if(tail - head <= 1) return 0; a[tail] = GetLineIntersection(Q[head], Q[tail]); int m = 0; for(int i = head; i <= tail; i++) out[m++] = a[i]; return m; } int main() { int n; while(scanf("%d",&n) != EOF&&n) { for(int i = 0; i < n; i++) scanf("%lf%lf",&pos[i].x,&pos[i].y); for(int i = 0; i < n; i++) { v1[i] = pos[(i+1)%n] - pos[i]; v2[i] = normal(v1[i]); } double l = 0, r = 1e10, mid; for(int i=0;i<100;i++) { mid = (l+r)/2; for(int i = 0; i < n; i++) L[i] = Line(pos[i] + v2[i]*mid, v1[i]); int m = HalfplaneIntersection(n); if(!m) r = mid; else l = mid; } printf("%.15f\n",l); } }