回答思路
得分点 惰性删除、定期删除,maxmemory-policy 标准回答 Redis有如下两种过期策略: 惰性删除:客户端访问一个key的时候,Redis会先检查它的过期时间,如果发现过期就立刻删除这个key。 定期删除:Redis会将设置了过期时间的key放到一个独立的字典中,并对该字典进行每秒10次的过期扫描, 过期扫描不会遍历字典中所有的key,而是采用了一种简单的贪心策略。该策略的删除逻辑如下: 1. 从过期字典中随机选择20个key; 2. 删除这20个key中已过期的key; 3. 如果已过期key的比例超过25%,则重复步骤1。 当写入数据将导致超出maxmemory限制时,Redis会采用maxmemory-policy所指定的策略进行数据淘汰,该策略一共包含8种选项,其中除了noeviction直接返回错误之外,筛选键的方式分为volatile和allkeys两种,volatile前缀代表从设置了过期时间的键中淘汰数据,allkeys前缀代表从所有的键中淘汰数据关于后缀,ttl代表选择过期时间最小的键,random代表随机选择键,需要我们额外关注的是lru和lfu后缀,它们分别代表采用lru算法和lfu算法来淘汰数据。因为allkeys是筛选所有的键,所以不存在ttl,余下三个后缀二者都有,lfu算法是再Redis4版本才提出来的。 加分回答 LRU(Least Recently Used)是按照最近最少使用原则来筛选数据,即最不常用的数据会被筛选出来 - 标准LRU:把所有的数据组成一个链表,表头和表尾分别表示MRU和LRU端,即最常使用端和最少使用端。刚被访问的数据会被移动到MRU端,而新增的数据也是刚被访问的数据,也会被移动到MRU端。当链表的空间被占满时,它会删除LRU端的数据。 - 近似LRU:Redis会记录每个数据的最近一次访问的时间戳(LRU)。Redis执行写入操作时,若发现内存超出maxmemory,就会执行一次近似LRU淘汰算法。近似LRU会随机采样N个key,然后淘汰掉最旧的key,若淘汰后内存依然超出限制,则继续采样淘汰。可以通过maxmemory_samples配置项,设置近似LRU每次采样的数据个数,该配置项的默认值为5。 LRU算法的不足之处在于,若一个key很少被访问,只是刚刚偶尔被访问了一次,则它就被认为是热点数据,短时间内不会被淘汰。 LFU算法正式用于解决上述问题,LFU(Least Frequently Used)是Redis4新增的淘汰策略,它根据key的最近访问频率进行淘汰。LFU在LRU的基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。当使用LFU策略淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出内存。如果两个数据的访问次数相同,LFU再比较这两个数据的访问时间,把访问时间更早的数据淘汰出内存。