列表

详情


126. 单词接龙 II

按字典 wordList 完成从单词 beginWord 到单词 endWord 转化,一个表示此过程的 转换序列 是形式上像 beginWord -> s1 -> s2 -> ... -> sk 这样的单词序列,并满足:

  • 每对相邻的单词之间仅有单个字母不同。
  • 转换过程中的每个单词 si1 <= i <= k)必须是字典 wordList 中的单词。注意,beginWord 不必是字典 wordList 中的单词。
  • sk == endWord

给你两个单词 beginWordendWord ,以及一个字典 wordList 。请你找出并返回所有从 beginWordendWord最短转换序列 ,如果不存在这样的转换序列,返回一个空列表。每个序列都应该以单词列表 [beginWord, s1, s2, ..., sk] 的形式返回。

 

示例 1:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:[["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
解释:存在 2 种最短的转换序列:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"

示例 2:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:[]
解释:endWord "cog" 不在字典 wordList 中,所以不存在符合要求的转换序列。

 

提示:

  • 1 <= beginWord.length <= 5
  • endWord.length == beginWord.length
  • 1 <= wordList.length <= 500
  • wordList[i].length == beginWord.length
  • beginWordendWordwordList[i] 由小写英文字母组成
  • beginWord != endWord
  • wordList 中的所有单词 互不相同

相似题目

单词接龙

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class Solution { public: vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) { } };

golang 解法, 执行用时: 4 ms, 内存消耗: 2.5 MB, 提交时间: 2023-09-23 11:00:00

func findLadders(beginWord string, endWord string, wordList []string) [][]string {
    if !wordin(endWord, wordList) {
        return nil
    }
    if dif(beginWord, endWord)==1 {
        return [][]string{{beginWord, endWord}}
    }
    status := make([]int, len(wordList))
    q := []int{}
    k := 1
    for i := 0; i < len(wordList); i++ {
        if dif(wordList[i], beginWord) == 1{
            q = append(q, i)
            status[i] = k
        }
    }
    var q1 []int
    found := false
    for len(q) > 0 && !found{
        k++
        for _, i := range q {
            for j := range wordList {
                if status[j] > 0 {
                    continue
                }
                if dif(wordList[i], wordList[j]) == 1 {
                    q1 = append(q1, j)
                    status[j] = k
                    if wordList[j] == endWord {
                        found = true
                        break
                    }
                }
            }
            if found {
                break
            }
        }
        q, q1 = q1, q[:0]
    }
    if !found {
        return nil
    }
    var res [][]string = [][]string{{endWord}}
    var tmp [][]string
    for i := k-1; i >=1; i-- {
        for j :=0; j < len(status); j++ {
            if status[j] == i {
                for _, r := range res {
                    if dif(r[len(r)-1], wordList[j]) == 1 {
                        rs := make([]string, 0, len(r)+1)
                        rs = append(rs, r...)
                        rs = append(rs, wordList[j])
                        tmp = append(tmp, rs)
                    }
                }
            }
        }
        res, tmp = tmp, [][]string{}
    }
    for i := 0; i < len(res); i++ {
        res[i] = revert(append(res[i], beginWord))
    }
    return res
}

func revert(ws []string) []string {
    i, j :=0, len(ws)-1
    for i < j {
        ws[i], ws[j] = ws[j], ws[i]
        i++
        j--
    }
    return ws
}


func wordin(word string, wordList []string) bool {
    for _, w := range wordList {
        if w == word {
            return true
        }
    }
    return false
}

func dif(w1, w2 string) int {
    k := 0
    for i := 0; i < len(w1); i++ {
        if w1[i] != w2[i] {
            k++
            if k > 1 {
                return k
            }
        }
    }
    return k
}

python3 解法, 执行用时: 52 ms, 内存消耗: 16.5 MB, 提交时间: 2023-09-23 10:58:38

class Solution:
    def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]:
        wordList.append(beginWord)
        ### 构建具有邻接关系的桶
        buckets = defaultdict(list)
        for word in wordList:
            for i in range(len(beginWord)):
                match = word[:i] + '_' + word[i+1:]
                buckets[match].append(word)
        ##### BFS遍历
        preWords = defaultdict(list)  # 前溯词列表
        toSeen = deque([(beginWord, 1)])  # 待遍历词及深度
        beFound = {beginWord:1}  # 已探测词列表
        while toSeen:
            curWord, level = toSeen.popleft()
            for i in range(len(beginWord)):
                match = curWord[:i] + '_' + curWord[i+1:]
                for word in buckets[match]:
                    if word not in beFound:
                        beFound[word] = level+1
                        toSeen.append((word, level+1))
                    if beFound[word] == level+1:  # 当前深度等于该词首次遍历深度,则仍应加入前溯词列表
                        preWords[word].append(curWord)
            if endWord in beFound and level+1 > beFound[endWord]:  # 已搜索到目标词,且完成当前层遍历
                break
        #### 列表推导式输出结果
        if endWord in beFound:
            res = [[endWord]]
            while res[0][0] != beginWord:
                res = [[word] + r for r in res for word in preWords[r[0]]] 
            return res
        else:
            return []

java 解法, 执行用时: 14 ms, 内存消耗: 43.6 MB, 提交时间: 2023-09-23 10:57:43

class Solution {
    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        List<List<String>> res = new ArrayList<>();
        // 因为需要快速判断扩展出的单词是否在 wordList 里,因此需要将 wordList 存入哈希表,这里命名为「字典」
        Set<String> dict = new HashSet<>(wordList);
        // 特殊用例判断
        if (!dict.contains(endWord)) {
            return res;
        }

        dict.remove(beginWord);

        // 第 1 步:广度优先搜索建图
        // 记录扩展出的单词是在第几次扩展的时候得到的,key:单词,value:在广度优先搜索的第几层
        Map<String, Integer> steps = new HashMap<String, Integer>();
        steps.put(beginWord, 0);
        // 记录了单词是从哪些单词扩展而来,key:单词,value:单词列表,这些单词可以变换到 key ,它们是一对多关系
        Map<String, List<String>> from = new HashMap<String, List<String>>();
        int step = 1;
        boolean found = false;
        int wordLen = beginWord.length();
        Queue<String> queue = new ArrayDeque<String>();
        queue.offer(beginWord);
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                String currWord = queue.poll();
                char[] charArray = currWord.toCharArray();
                // 将每一位替换成 26 个小写英文字母
                for (int j = 0; j < wordLen; j++) {
                    char origin = charArray[j];
                    for (char c = 'a'; c <= 'z'; c++) {
                        charArray[j] = c;
                        String nextWord = String.valueOf(charArray);
                        if (steps.containsKey(nextWord) && step == steps.get(nextWord)) {
                            from.get(nextWord).add(currWord);
                        }
                        if (!dict.contains(nextWord)) {
                            continue;
                        }
                        // 如果从一个单词扩展出来的单词以前遍历过,距离一定更远,为了避免搜索到已经遍历到,且距离更远的单词,需要将它从 dict 中删除
                        dict.remove(nextWord);
                        // 这一层扩展出的单词进入队列
                        queue.offer(nextWord);

                        // 记录 nextWord 从 currWord 而来
                        from.putIfAbsent(nextWord, new ArrayList<>());
                        from.get(nextWord).add(currWord);
                        // 记录 nextWord 的 step
                        steps.put(nextWord, step);
                        if (nextWord.equals(endWord)) {
                            found = true;
                        }
                    }
                    charArray[j] = origin;
                }
            }
            step++;
            if (found) {
                break;
            }
        }

        // 第 2 步:回溯找到所有解,从 endWord 恢复到 beginWord ,所以每次尝试操作 path 列表的头部
        if (found) {
            Deque<String> path = new ArrayDeque<>();
            path.add(endWord);
            backtrack(from, path, beginWord, endWord, res);
        }
        return res;
    }

    public void backtrack(Map<String, List<String>> from, Deque<String> path, String beginWord, String cur, List<List<String>> res) {
        if (cur.equals(beginWord)) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (String precursor : from.get(cur)) {
            path.addFirst(precursor);
            backtrack(from, path, beginWord, precursor, res);
            path.removeFirst();
        }
    }
}

cpp 解法, 执行用时: 68 ms, 内存消耗: 21.9 MB, 提交时间: 2023-09-23 10:57:28

class Solution {
public:
    vector<vector<string>> findLadders(string beginWord, string endWord, vector<string> &wordList) {
        vector<vector<string>> res;
        // 因为需要快速判断扩展出的单词是否在 wordList 里,因此需要将 wordList 存入哈希表,这里命名为「字典」
        unordered_set<string> dict = {wordList.begin(), wordList.end()};
        // 修改以后看一下,如果根本就不在 dict 里面,跳过
        if (dict.find(endWord) == dict.end()) {
            return res;
        }
        // 特殊用例处理
        dict.erase(beginWord);

        // 第 1 步:广度优先搜索建图
        // 记录扩展出的单词是在第几次扩展的时候得到的,key:单词,value:在广度优先搜索的第几层
        unordered_map<string, int> steps = {{beginWord, 0}};
        // 记录了单词是从哪些单词扩展而来,key:单词,value:单词列表,这些单词可以变换到 key ,它们是一对多关系
        unordered_map<string, set<string>> from = {{beginWord, {}}};
        int step = 0;
        bool found = false;
        queue<string> q = queue<string>{{beginWord}};
        int wordLen = beginWord.length();
        while (!q.empty()) {
            step++;
            int size = q.size();
            for (int i = 0; i < size; i++) {
                const string currWord = move(q.front());
                string nextWord = currWord;
                q.pop();
                // 将每一位替换成 26 个小写英文字母
                for (int j = 0; j < wordLen; ++j) {
                    const char origin = nextWord[j];
                    for (char c = 'a'; c <= 'z'; ++c) {
                        nextWord[j] = c;
                        if (steps[nextWord] == step) {
                            from[nextWord].insert(currWord);
                        }
                        if (dict.find(nextWord) == dict.end()) {
                            continue;
                        }
                        // 如果从一个单词扩展出来的单词以前遍历过,距离一定更远,为了避免搜索到已经遍历到,且距离更远的单词,需要将它从 dict 中删除
                        dict.erase(nextWord);
                        // 这一层扩展出的单词进入队列
                        q.push(nextWord);
                        // 记录 nextWord 从 currWord 而来
                        from[nextWord].insert(currWord);
                        // 记录 nextWord 的 step
                        steps[nextWord] = step;
                        if (nextWord == endWord) {
                            found = true;
                        }
                    }
                    nextWord[j] = origin;
                }
            }
            if (found) {
                break;
            }
        }
        // 第 2 步:回溯找到所有解,从 endWord 恢复到 beginWord ,所以每次尝试操作 path 列表的头部
        if (found) {
            vector<string> Path = {endWord};
            backtrack(res, endWord, from, Path);
        }
        return res;
    }

    void backtrack(vector<vector<string>> &res, const string &Node, unordered_map<string, set<string>> &from,
             vector<string> &path) {
        if (from[Node].empty()) {
            res.push_back({path.rbegin(), path.rend()});
            return;
        }
        for (const string &Parent: from[Node]) {
            path.push_back(Parent);
            backtrack(res, Parent, from, path);
            path.pop_back();
        }
    }
};

上一题