class Solution {
public:
int minimumLengthEncoding(vector<string>& words) {
}
};
820. 单词的压缩编码
单词数组 words
的 有效编码 由任意助记字符串 s
和下标数组 indices
组成,且满足:
words.length == indices.length
s
以 '#'
字符结尾indices[i]
,s
的一个从 indices[i]
开始、到下一个 '#'
字符结束(但不包括 '#'
)的 子字符串 恰好与 words[i]
相等给你一个单词数组 words
,返回成功对 words
进行编码的最小助记字符串 s
的长度 。
示例 1:
输入:words = ["time", "me", "bell"]
输出:10
解释:一组有效编码为 s = "time#bell#" 和 indices = [0, 2, 5
] 。
words[0] = "time" ,s 开始于 indices[0] = 0 到下一个 '#' 结束的子字符串,如加粗部分所示 "time#bell#"
words[1] = "me" ,s 开始于 indices[1] = 2 到下一个 '#' 结束的子字符串,如加粗部分所示 "time#bell#"
words[2] = "bell" ,s 开始于 indices[2] = 5 到下一个 '#' 结束的子字符串,如加粗部分所示 "time#bell#"
示例 2:
输入:words = ["t"] 输出:2 解释:一组有效编码为 s = "t#" 和 indices = [0] 。
提示:
1 <= words.length <= 2000
1 <= words[i].length <= 7
words[i]
仅由小写字母组成原站题解
python3 解法, 执行用时: 76 ms, 内存消耗: 15.4 MB, 提交时间: 2022-11-17 16:38:46
class Solution: def minimumLengthEncoding(self, words: List[str]) -> int: good = set(words) for word in words: for k in range(1, len(word)): good.discard(word[k:]) return sum(len(word) + 1 for word in good)
python3 解法, 执行用时: 120 ms, 内存消耗: 17.2 MB, 提交时间: 2022-11-17 16:38:35
class Solution: def minimumLengthEncoding(self, words: List[str]) -> int: words = list(set(words)) #remove duplicates #Trie is a nested dictionary with nodes created # when fetched entries are missing Trie = lambda: collections.defaultdict(Trie) trie = Trie() #reduce(..., S, trie) is trie[S[0]][S[1]][S[2]][...][S[S.length - 1]] nodes = [reduce(dict.__getitem__, word[::-1], trie) for word in words] #Add word to the answer if it's node has no neighbors return sum(len(word) + 1 for i, word in enumerate(words) if len(nodes[i]) == 0)