列表

详情


1341. 电影评分

表:Movies

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| movie_id      | int     |
| title         | varchar |
+---------------+---------+
movie_id 是这个表的主键。
title 是电影的名字。

表:Users

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| name          | varchar |
+---------------+---------+
user_id 是表的主键。

表:MovieRating

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| movie_id      | int     |
| user_id       | int     |
| rating        | int     |
| created_at    | date    |
+---------------+---------+
(movie_id, user_id) 是这个表的主键。
这个表包含用户在其评论中对电影的评分 rating 。
created_at 是用户的点评日期。 

 

请你编写一组 SQL 查询:

字典序 ,即按字母在字典中出现顺序对字符串排序,字典序较小则意味着排序靠前。

查询结果格式如下例所示。

 

示例:

输入:
Movies 表:
+-------------+--------------+
| movie_id    |  title       |
+-------------+--------------+
| 1           | Avengers     |
| 2           | Frozen 2     |
| 3           | Joker        |
+-------------+--------------+
Users 表:
+-------------+--------------+
| user_id     |  name        |
+-------------+--------------+
| 1           | Daniel       |
| 2           | Monica       |
| 3           | Maria        |
| 4           | James        |
+-------------+--------------+
MovieRating 表:
+-------------+--------------+--------------+-------------+
| movie_id    | user_id      | rating       | created_at  |
+-------------+--------------+--------------+-------------+
| 1           | 1            | 3            | 2020-01-12  |
| 1           | 2            | 4            | 2020-02-11  |
| 1           | 3            | 2            | 2020-02-12  |
| 1           | 4            | 1            | 2020-01-01  |
| 2           | 1            | 5            | 2020-02-17  | 
| 2           | 2            | 2            | 2020-02-01  | 
| 2           | 3            | 2            | 2020-03-01  |
| 3           | 1            | 3            | 2020-02-22  | 
| 3           | 2            | 4            | 2020-02-25  | 
+-------------+--------------+--------------+-------------+
输出:
Result 表:
+--------------+
| results      |
+--------------+
| Daniel       |
| Frozen 2     |
+--------------+
解释:
Daniel 和 Monica 都点评了 3 部电影("Avengers", "Frozen 2" 和 "Joker") 但是 Daniel 字典序比较小。
Frozen 2 和 Joker 在 2 月的评分都是 3.5,但是 Frozen 2 的字典序比较小。

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
# Write your MySQL query statement below

pythondata 解法, 执行用时: 572 ms, 内存消耗: 67.7 MB, 提交时间: 2024-05-27 11:20:51

import pandas as pd

def movie_rating(movies: pd.DataFrame, users: pd.DataFrame, movie_rating: pd.DataFrame) -> pd.DataFrame:
    # 存储结果
    ans = []
    
    # 1.查找评论电影数量最多的用户名。
    comments = movie_rating['user_id'].value_counts().reset_index()
    # 连接表后按评论数降序,名称升序输出
    user_comments = comments.merge(users, how='left', on='user_id').sort_values(by=['count', 'name'], ascending=[False, True])
    ans.append(user_comments.iloc[0, 2])

    # 2.查找在 February 2020 平均评分最高的电影名称。
    mean_rating = movie_rating[movie_rating['created_at'].dt.strftime('%Y-%m')=='2020-02'].groupby('movie_id')['rating'].mean().reset_index()
    # 连接表后按评分降序,名称升序输出
    rating_movies = mean_rating.merge(movies, how='left', on='movie_id').sort_values(by=['rating', 'title'], ascending=[False, True])
    ans.append(rating_movies.iloc[0, 2])

    # 返回DataFrame对象
    return pd.DataFrame(ans, columns=['results'], dtype=object)
    

def movie_rating2(movies: pd.DataFrame, users: pd.DataFrame, movie_rating: pd.DataFrame) -> pd.DataFrame:
    #先将3个表连接,提供聚合与输出维度
    mtb = movie_rating.merge(users, on='user_id', how='inner').merge(movies, on='movie_id', how='inner')
    #求评论最多的用户
    user_res = mtb.groupby(by=['user_id', 'name'])[['user_id', 'name']].value_counts().reset_index(name='cnt').sort_values(by=['cnt', 'name'], ascending=[False, True]).iloc[0]['name']
    #求评分最高的电影
    movie_res = mtb[mtb['created_at'].dt.strftime('%Y-%m')=='2020-02'].groupby(['movie_id', 'title'])['rating'].mean().reset_index(name='avg').sort_values(by=['avg', 'title'], ascending=[False, True]).iloc[0]['title']
    #组合输出
    return pd.DataFrame({'results':[user_res, movie_res]})

mysql 解法, 执行用时: 634 ms, 内存消耗: 0 B, 提交时间: 2023-04-02 12:03:50

# Write your MySQL query statement below
(select dd1.`name` as results from 
    (select `name`, count(*) as n
    from users natural join MovieRating
    group by user_id) as dd1
    order by dd1.n desc, dd1.`name`
    limit 1)
union
(select dd2.title as results from 
    (select title, avg(rating) as n
    from MovieRating natural join movies
    where year(created_at)='2020' and month(created_at)='02'
    group by movie_id) as dd2
    order by dd2.n desc, dd2.title
    limit 1);

mysql 解法, 执行用时: 706 ms, 内存消耗: 0 B, 提交时间: 2023-04-02 12:01:41

SELECT T.results FROM 
(
    SELECT U.name AS results,MR.user_id
    FROM Users U,MovieRating MR 
    WHERE U.user_id = MR.user_id
    GROUP BY MR.user_id,U.name
    ORDER BY COUNT(1) DESC,U.NAME ASC
    limit 1
) T
UNION ALL
SELECT Q.results FROM 
(
    SELECT M.title AS results
    FROM Movies M,MovieRating MM 
    WHERE M.movie_id = MM.movie_id 
    AND MM.created_at LIKE '2020-02%'
    GROUP BY M.title
    ORDER BY AVG(MM.rating) DESC,M.title ASC
    limit 1
) Q

mysql 解法, 执行用时: 812 ms, 内存消耗: 0 B, 提交时间: 2023-04-02 12:01:19

# Write your MySQL query statement below
# 评论电影数量最多且字典序较小的用户名
(
    select Users.name as results
    FROM MovieRating
        JOIN Users ON MovieRating.user_id = Users.user_id
    GROUP BY MovieRating.user_id
    ORDER BY
        count(MovieRating.user_id) desc,
        Users.name
    LIMIT 1
)
UNION (
# 2020年2月份平均评分最高且字典序较小的电影名
    select
        Movies.title as results
    FROM MovieRating
        JOIN Movies ON MovieRating.movie_id = Movies.movie_id
    WHERE
        MovieRating.created_at >= '2020-02-01'
        AND MovieRating.created_at < '2020-03-01'
    GROUP BY MovieRating.movie_id
    ORDER BY
        avg(MovieRating.rating) desc,
        Movies.title
    LIMIT 1
)

mysql 解法, 执行用时: 669 ms, 内存消耗: 0 B, 提交时间: 2023-04-02 12:01:04

# Write your MySQL query statement below
# 每个用户的评论数
with User_Rating as (
    select user_id, count(rating) rating from MovieRating group by user_id
),
# 2020-02,每个电影的平均评分
Avg_Rating as (
    select movie_id, avg(rating) rating
    from MovieRating
    where date_format(created_at, '%Y-%m') = '2020-02'
    group by movie_id
)
select min(a.name) results 
from Users a 
join User_Rating b on a.user_id = b.user_id
where b.rating = (
    select max(rating) rating from User_Rating
)
union all
select min(a.title) results
from Movies a
join Avg_Rating b on a.movie_id = b.movie_id
where b.rating = (
    select max(rating) rating from Avg_Rating
)

上一题