列表

详情


2123. 使矩阵中的 1 互不相邻的最小操作数

给你一个 下标从 0 开始 的矩阵 grid。每次操作,你可以把 grid 中的 一个 1 变成 0

如果一个矩阵中,没有 1 与其它的 1 四连通(也就是说所有 1 在上下左右四个方向上不能与其他 1 相邻),那么该矩阵就是 完全独立 的。

请返回让 grid 成为 完全独立 的矩阵的 最小操作数

 

示例 1:

输入: grid = [[1,1,0],[0,1,1],[1,1,1]]
输出: 3
解释: 可以进行三次操作(把 grid[0][1], grid[1][2] 和 grid[2][1] 变成 0)。
操作后的矩阵中的所有的 1 与其它 1 均不相邻,因此矩阵是完全独立的。

示例 2:

输入: grid = [[0,0,0],[0,0,0],[0,0,0]]
输出: 0
解释: 矩阵中没有 1,此时矩阵也是完全独立的,因此无需操作,返回 0。

示例 3:

输入: grid = [[0,1],[1,0]]
输出: 0
解释: 矩阵中的所有的 1 与其它 1 均不相邻,已经是完全独立的,因此无需操作,返回 0。

 

提示:

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class Solution { public: int minimumOperations(vector<vector<int>>& grid) { } };

上一题