class Solution {
public:
int minAbsoluteSumDiff(vector<int>& nums1, vector<int>& nums2) {
}
};
1818. 绝对差值和
给你两个正整数数组 nums1
和 nums2
,数组的长度都是 n
。
数组 nums1
和 nums2
的 绝对差值和 定义为所有 |nums1[i] - nums2[i]|
(0 <= i < n
)的 总和(下标从 0 开始)。
你可以选用 nums1
中的 任意一个 元素来替换 nums1
中的 至多 一个元素,以 最小化 绝对差值和。
在替换数组 nums1
中最多一个元素 之后 ,返回最小绝对差值和。因为答案可能很大,所以需要对 109 + 7
取余 后返回。
|x|
定义为:
x >= 0
,值为 x
,或者x <= 0
,值为 -x
示例 1:
输入:nums1 = [1,7,5], nums2 = [2,3,5]
输出:3
解释:有两种可能的最优方案:
- 将第二个元素替换为第一个元素:[1,7,5] => [1,1,5] ,或者
- 将第二个元素替换为第三个元素:[1,7,5] => [1,5,5]
两种方案的绝对差值和都是 |1-2| + (|1-3| 或者 |5-3|) + |5-5| =
3
示例 2:
输入:nums1 = [2,4,6,8,10], nums2 = [2,4,6,8,10] 输出:0 解释:nums1 和 nums2 相等,所以不用替换元素。绝对差值和为 0
示例 3:
输入:nums1 = [1,10,4,4,2,7], nums2 = [9,3,5,1,7,4]
输出:20
解释:将第一个元素替换为第二个元素:[1,10,4,4,2,7] => [10,10,4,4,2,7]
绝对差值和为 |10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20
提示:
n == nums1.length
n == nums2.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 105
原站题解
python3 解法, 执行用时: 320 ms, 内存消耗: 29.3 MB, 提交时间: 2023-09-18 15:05:10
class Solution: def minAbsoluteSumDiff(self, nums1: List[int], nums2: List[int]) -> int: a = sorted(nums1) best, total, n = 0, 0, len(nums1) for x, y in zip(nums1, nums2): cur = abs(x - y) total += cur idx = bisect.bisect_left(a, y) if idx < n: best = max(best, cur - (a[idx] - y)) if idx > 0: best = max(best, cur - (y - a[idx - 1])) return (total - best) % (10**9 + 7)
golang 解法, 执行用时: 168 ms, 内存消耗: 8.6 MB, 提交时间: 2023-09-18 15:02:05
func minAbsoluteSumDiff(nums1, nums2 []int) int { rec := append(sort.IntSlice(nil), nums1...) rec.Sort() sum, maxn, n := 0, 0, len(nums1) for i, v := range nums2 { diff := abs(nums1[i] - v) sum += diff j := rec.Search(v) if j < n { maxn = max(maxn, diff-(rec[j]-v)) } if j > 0 { maxn = max(maxn, diff-(v-rec[j-1])) } } return (sum - maxn) % (1e9 + 7) } func abs(x int) int { if x < 0 { return -x } return x } func max(a, b int) int { if a > b { return a } return b }
javascript 解法, 执行用时: 208 ms, 内存消耗: 54.1 MB, 提交时间: 2023-09-18 15:01:42
/** * @param {number[]} nums1 * @param {number[]} nums2 * @return {number} */ var minAbsoluteSumDiff = function(nums1, nums2) { const MOD = 1000000007; const n = nums1.length; const rec = [...nums1]; rec.sort((a, b) => a - b); let sum = 0, maxn = 0; for (let i = 0; i < n; i++) { const diff = Math.abs(nums1[i] - nums2[i]); sum = (sum + diff) % MOD; const j = binarySearch(rec, nums2[i]); if (j < n) { maxn = Math.max(maxn, diff - (rec[j] - nums2[i])); } if (j > 0) { maxn = Math.max(maxn, diff - (nums2[i] - rec[j - 1])); } } return (sum - maxn + MOD) % MOD; }; const binarySearch = (rec, target) => { let low = 0, high = rec.length - 1; if (rec[high] < target) { return high + 1; } while (low < high) { const mid = Math.floor((high - low) / 2) + low; if (rec[mid] < target) { low = mid + 1; } else { high = mid; } } return low; }
java 解法, 执行用时: 71 ms, 内存消耗: 59.3 MB, 提交时间: 2023-09-18 15:01:28
class Solution { public int minAbsoluteSumDiff(int[] nums1, int[] nums2) { final int MOD = 1000000007; int n = nums1.length; int[] rec = new int[n]; System.arraycopy(nums1, 0, rec, 0, n); Arrays.sort(rec); int sum = 0, maxn = 0; for (int i = 0; i < n; i++) { int diff = Math.abs(nums1[i] - nums2[i]); sum = (sum + diff) % MOD; int j = binarySearch(rec, nums2[i]); if (j < n) { maxn = Math.max(maxn, diff - (rec[j] - nums2[i])); } if (j > 0) { maxn = Math.max(maxn, diff - (nums2[i] - rec[j - 1])); } } return (sum - maxn + MOD) % MOD; } public int binarySearch(int[] rec, int target) { int low = 0, high = rec.length - 1; if (rec[high] < target) { return high + 1; } while (low < high) { int mid = (high - low) / 2 + low; if (rec[mid] < target) { low = mid + 1; } else { high = mid; } } return low; } }
cpp 解法, 执行用时: 208 ms, 内存消耗: 62.9 MB, 提交时间: 2023-09-18 15:01:15
// 排序 + 二分 class Solution { public: static constexpr int mod = 1'000'000'007; int minAbsoluteSumDiff(vector<int>& nums1, vector<int>& nums2) { vector<int> rec(nums1); sort(rec.begin(), rec.end()); int sum = 0, maxn = 0; int n = nums1.size(); for (int i = 0; i < n; i++) { int diff = abs(nums1[i] - nums2[i]); sum = (sum + diff) % mod; int j = lower_bound(rec.begin(), rec.end(), nums2[i]) - rec.begin(); if (j < n) { maxn = max(maxn, diff - (rec[j] - nums2[i])); } if (j > 0) { maxn = max(maxn, diff - (nums2[i] - rec[j - 1])); } } return (sum - maxn + mod) % mod; } };