列表

详情


1349. 参加考试的最大学生数

给你一个 m * n 的矩阵 seats 表示教室中的座位分布。如果座位是坏的(不可用),就用 '#' 表示;否则,用 '.' 表示。

学生可以看到左侧、右侧、左上、右上这四个方向上紧邻他的学生的答卷,但是看不到直接坐在他前面或者后面的学生的答卷。请你计算并返回该考场可以容纳的一起参加考试且无法作弊的最大学生人数。

学生必须坐在状况良好的座位上。

 

示例 1:

输入:seats = [["#",".","#","#",".","#"],
              [".","#","#","#","#","."],
              ["#",".","#","#",".","#"]]
输出:4
解释:教师可以让 4 个学生坐在可用的座位上,这样他们就无法在考试中作弊。 

示例 2:

输入:seats = [[".","#"],
              ["#","#"],
              ["#","."],
              ["#","#"],
              [".","#"]]
输出:3
解释:让所有学生坐在可用的座位上。

示例 3:

输入:seats = [["#",".",".",".","#"],
              [".","#",".","#","."],
              [".",".","#",".","."],
              [".","#",".","#","."],
              ["#",".",".",".","#"]]
输出:10
解释:让学生坐在第 1、3 和 5 列的可用座位上。

 

提示:

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class Solution { public: int maxStudents(vector<vector<char>>& seats) { } };

javascript 解法, 执行用时: 72 ms, 内存消耗: 43.4 MB, 提交时间: 2023-12-26 09:22:41

/**
 * @param {character[][]} seats
 * @return {number}
 */
var maxStudents = function(seats) {
    const m = seats.length, n = seats[0].length;
    const memo = new Map();

    const isSingleRowCompliant = function(status, row) {
        for (let j = 0; j < n; j++) {
            if ((status >> j) & 1) {
                if (seats[row][j] == '#') {
                    return false;
                }
                if (j > 0 && ((status >> (j - 1)) & 1)) {
                    return false;
                }
            }
        }
        return true;
    };
    
    const isCrossRowsCompliant = function(status, upperRowStatus) {
        for (let j = 0; j < n; j++) {
            if ((status >> j) & 1) {
                if (j > 0 && ((upperRowStatus >> (j - 1)) & 1)) {
                    return false;
                }
                if (j < n - 1 && ((upperRowStatus >> (j + 1)) & 1)) {
                    return false;
                }
            }
        }
        return true;
    };

    // 当第row排学生状态为status时,第row排及之前排最多能坐的学生数量
    const dp = function(row, status) {
        const key = (row << n) + status;
        if (!memo.has(key)) {
            if (!isSingleRowCompliant(status, row)) {
                memo.set(key, -Infinity);
                return -Infinity;
            }
            let students = bitCount(status);
            if (row == 0) {
                memo.set(key, students);
                return students;
            }
            let mx = 0;
            for (let upperRowStatus = 0; upperRowStatus < 1 << n; upperRowStatus++) {
                if (isCrossRowsCompliant(status, upperRowStatus)) {
                    mx = Math.max(mx, dp(row - 1, upperRowStatus));
                }
            }
            memo.set(key, students + mx);
        }
        return memo.get(key);
    };
    
    let mx = 0;
    for (let i = 0; i < (1 << n); i++) {
        mx = Math.max(mx, dp(m - 1, i));
    }
    return mx;
};

var bitCount = function(num) {
    let bits = num;
    bits = bits - ((bits >> 1) & 0x55555555);
    bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
    bits = (bits + (bits >> 4)) & 0x0f0f0f0f;
    bits = (bits + (bits >> 8)) & 0x00ff00ff;
    bits = (bits + (bits >> 16)) & 0x0000ffff;
    return bits;
}

java 解法, 执行用时: 1 ms, 内存消耗: 39.1 MB, 提交时间: 2023-10-12 09:56:56

class Solution {
    public int maxStudents(char[][] seats) {
        int n = seats.length;
        int[] arr = new int[n];
        //组成二进制数组
        for(int i = 0; i < n; i++){
            char[] seat = seats[i]; // 遍历行
            int v = 0;
            for(char c:seat){  // 遍历列
                int curr = c == '.' ? 1: 0;
                v = v*2 + curr;
            }
            arr[i] = v;
        }

        //记忆化数组,index+前一元素状态
        for(int i = 0; i < 8; i++) Arrays.fill(dp[i],-1);

        return dfs(arr,0,0);
    }
    
    int[][] dp = new int[8][256];

    private int dfs(int[]list,int index,int preVal){
        if(index==list.length) return 0;

        if(dp[index][preVal]!=-1) return dp[index][preVal];
        int ans = 0;
        int v = list[index];
        //枚举子集
        for(int i=v;i>0;i=v&(i-1)){
            //和本行两侧不连着,和上一行两侧不连着
            if((i&(i>>1))==0 && (preVal&(i<<1))==0 && (preVal&(i>>1))==0){
                ans = Math.max(dfs(list,index+1,i)+Integer.bitCount(i),ans);
            }
        }
        ans = Math.max(ans,dfs(list,index+1,0));
        dp[index][preVal] = ans;
        return ans;
    }
}

java 解法, 执行用时: 1 ms, 内存消耗: 38.8 MB, 提交时间: 2023-10-12 09:52:55

class Solution {
    private int M;//座位行数
    private int N;//每行座位数
    private int[] initStatusOfRows;//初始时,各行座位的状态

    public int maxStudents(char[][] seats) {
        M = seats.length;
        N = seats[0].length;//每行座位数
        initStatusOfRows = compress(seats);//初始时,各行座位的状态
        int[][] cache = new int[M][(1 << N)];
        for (int[] row : cache) Arrays.fill(row, -1);
        return dfsProcess(0, initStatusOfRows[0], cache);//第0行座位状态总是等于初始状态
    }

    /**
     * 按行尝试在座位上填充学生,求当前行座位状态为statusOfCurRow的情况下,在第rowNum~M-1行上最多安排多少学生
     *
     * @param rowNum         当前考察到的座位行号
     * @param statusOfCurRow 当前行的座位状态,第0~N-1 bit位上如果是1,表示该位置可以坐人;当前行状态是由该行初始状态和上一行学生分布状态决定的
     * @param cache          记忆化搜索的缓存数组 rowNum:0~M-1  statusOfCurRow:0~((1<<N)-1)
     * @return
     */
    private int dfsProcess(int rowNum, int statusOfCurRow, int[][] cache) {
        if (cache[rowNum][statusOfCurRow] != -1) return cache[rowNum][statusOfCurRow];
        int res = 0;//返回值
        //穷举当前行学生所有可能的分布状态
        int limit = (1 << N);
        for (int studentOfCurRow = 0; studentOfCurRow < limit; ++studentOfCurRow) {//StudentOfCurRow表示当前行学生分布状态,某个bit为1表示该位置有学生坐
            //当前行学生分布首先不能与当前行座位分布冲突(不能坐到不可以坐的位置),
            //这意味着在0~N-1 bit范围上,如果statusOfCurRow在该bit为0,StudentOfCurRow在该bit只能为0
            if (((~statusOfCurRow) & studentOfCurRow) != 0) continue;
            //当前行学生分布,任意两学生之间不能相邻
            if ((studentOfCurRow & (studentOfCurRow >> 1)) != 0) continue;
            int count = 0;//统计人数
            for (int i = 0; i < N; i++) {
                count += (studentOfCurRow >> i) & 1;
            }
            if (rowNum < M - 1) {//如果当前行不是最后一行(这个代码块也是隐含的递归出口)
                //求下一行座位状态
                int statusOfNextRow = initStatusOfRows[rowNum + 1];
                //由于本行的学生分布studentOfCurRow会影响下一行,具体来说:(studentOfCurRow>>1)或者(studentOfCurRow<<1)哪个bit位为1,
                //那么statusOfNextRow的该bit位必须为0
                statusOfNextRow &= (~(studentOfCurRow >> 1));
                statusOfNextRow &= (~(studentOfCurRow << 1));
                count += dfsProcess(rowNum + 1, statusOfNextRow, cache);
            }
            res = Math.max(res, count);
        }
        cache[rowNum][statusOfCurRow] = res;
        return res;
    }

    //计算初始时,各行座位的状态
    private int[] compress(char[][] seats) {
        int[] res = new int[M];
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < N; j++) {
                res[i] |= seats[i][j] == '.' ? (1 << j) : 0;
            }
        }
        return res;
    }
}

cpp 解法, 执行用时: 4 ms, 内存消耗: 7.5 MB, 提交时间: 2023-10-12 09:50:16

class Solution {
    int memory[8][1 << 8];
    vector<int> compressed_seats;
    int f(int X, int row_num, int width) {
        if (memory[row_num][X] != -1)
            return memory[row_num][X];
        int ans = 0;
        for (int scheme = 0; scheme != (1 << width); ++scheme) {
            if (scheme & ~X || scheme & (scheme << 1))
                continue;
            int curans = 0;
            for (int j = 0; j != width; ++j)
                if ((1 << j) & scheme)
                    ++curans;
            if (row_num == compressed_seats.size() - 1)
                ans = max(ans, curans);
            else {
                int next_seats = compressed_seats[row_num + 1];
                next_seats &= ~(scheme << 1);
                next_seats &= ~(scheme >> 1);
                ans = max(ans, curans + f(next_seats, row_num + 1, width));
            }
        }
        memory[row_num][X] = ans;
        return ans;
    }
    
    int compress(vector<char>& row) {
        int ans = 0;
        for (char c : row) {
            ans <<= 1;
            if (c == '.')
                ++ans;
        }
        return ans;
    }

public:
    int maxStudents(vector<vector<char>>& seats) {
        for (int i = 0; i != seats.size(); ++i)
            for (int j = 0; j != (1 << seats[0].size()); ++j)
                memory[i][j] = -1;
        for (auto row: seats)
            compressed_seats.push_back(compress(row));
        return f(compressed_seats[0], 0, seats[0].size());
    }
};

python3 解法, 执行用时: 88 ms, 内存消耗: 16.1 MB, 提交时间: 2023-10-12 09:49:58

'''
记忆化搜索 + 状态压缩dp
'''

import functools

class Solution:
    @functools.lru_cache(8 * 2 ** 8)
    def f(self, X: List[str], row_num: int, width: int) -> int:
        ans = 0
        for scheme in range(1 << width):
            if scheme & ~X or scheme & (scheme << 1):
                continue
            curans = 0
            for j in range(8):
                if (1 << j) & scheme:
                    curans += 1
            if row_num == len(self.seats) - 1:
                ans = max(ans, curans)
            else:
                next_seats = self.seats[row_num + 1]
                next_seats &= ~(scheme << 1)
                next_seats &= ~(scheme >> 1)
                ans = max(ans, curans + self.f(next_seats, row_num + 1, width))
        return ans

    def compress(self, row: List[str]) -> int:
        ans = 0
        for c in row:
            ans <<= 1
            if c == '.':
                ans += 1
        return ans

    def maxStudents(self, seats: List[List[str]]) -> int:
        self.seats = [self.compress(row) for row in seats]
        return self.f(self.seats[0], 0, len(seats[0]))

cpp 解法, 执行用时: 12 ms, 内存消耗: 8 MB, 提交时间: 2023-10-12 09:46:49

class Solution {
public:
    int maxStudents(vector<vector<char>>& seats) {
        int m=seats.size();
    int n=seats[0].size();
    vector<vector<int>> dp(m+1,vector<int>(1<<n));  //初始化

    for(int row=1;row<=m;row++){
        for(int s=0;s<(1<<n);s++){//遍历 2^n 个状态
            bitset<8> bs(s);//记录对应状态的bit位
            bool ok=true;
            for(int j=0;j<n;j++){
                if((bs[j] && seats[row-1][j]=='#') || (j<n-1 && bs[j] && bs[j+1])){//不能坐在坏椅子上也不能在同一行相邻坐
                    ok=false;
                    break;
                }
            }
            if(!ok){
                dp[row][s]=-1;//说明坐在坏椅子上或相邻坐了,该状态舍弃
                continue;
            }
            for(int last=0;last<(1<<n);last++){//找到一种当前行的可行状态后,遍历上一行的所有状态
                if(dp[row-1][last]==-1)//上一行的状态被舍弃了,那就直接下一个状态
                    continue;
                bitset<8> lbs(last);
                bool flag=true;
                for(int j=0;j<n;j++){
                    if(lbs[j] && ((j>0 && bs[j-1]) || (j<n-1 && bs[j+1]))){//如果找到的这个上一行状态的j位置坐了人,
                        flag=false;                                    //下一行的j+1位置或j-1位置也坐了人,那么该状态不合法,舍弃
                        break;
                    }
                }
                if(flag){//flag为真说明这个last状态的每个位置都合法
                    dp[row][s]=max(dp[row][s],dp[row-1][last]+(int)bs.count());//转移方程
                }
            }

        }
    }
    int res=0;
    for(int i=0;i<(1<<n);i++){//在最后一行的所有状态中找出最大的
        if(dp[m][i]>res){
            res=dp[m][i];
        }
    }
    return res;
    }
};

python3 解法, 执行用时: 120 ms, 内存消耗: 15.8 MB, 提交时间: 2023-10-12 09:46:11

'''
状态压缩dp
dp[i][j] 表示第i行的座位分布为j时,前i行可容纳最多学生人数
'''
from functools import reduce
class Solution:
    def maxStudents(self, seats: List[List[str]]) -> int:
        m, n = len(seats), len(seats[0]),
        dp = [[0]*(1 << n) for _ in range(m+1)]  # 状态数组 dp
        # 将 # 设为 1,当遇到 . 时与运算结果为 0,表示可以坐人
        a = [reduce(lambda x,y:x|1<<y,[0]+[j for j in range(n) if seats[i][j]=='#'])  for i in range(m)] 
        # print(a)
        for row in range(m)[::-1]: # 倒着遍历
            for j in range(1 << n):
                # j & a[row]代表该位置可以坐人,j & j<<1 and not j&j>>1 表示该位置左右没人可以坐的
                if not j & j<<1 and not j&j>>1 and not j & a[row]:
                    for k in range(1 << n):
                        if not j&k<<1 and not j&k>>1: # j状态的左上和右上没有人
                            dp[row][j] = max(dp[row][j], dp[row+1][k] + bin(j).count('1'))
        # print(dp)
        return max(dp[0])

golang 解法, 执行用时: 0 ms, 内存消耗: 2.1 MB, 提交时间: 2023-10-12 09:36:27

func maxStudents(seats [][]byte) (ans int) {
	m, n := len(seats), len(seats[0])
	mm := 1 << uint(n)
	ss, f := make([]int, m+1), make([]int, mm)
	ss[0] = 0
	for i := range seats {
		for j := range seats[i] {
			if seats[i][j] == '.' {
				ss[i+1] |= 1 << uint(j)
			}
		}
	}
	preMax := 0
	for i := 1; i <= m; i++ {
		ff := make([]int, mm)
		for mask := 0; mask < mm; mask++ {
			ff[mask] = preMax
			curMax := 0
			if mask&ss[i] == mask && mask<<1&mask == 0 {
				preMask := (mask<<1 ^ ss[i-1]) & (ss[i-1] ^ mask>>1)
				curCnt := bits.OnesCount(uint(mask))
				curMax = max(curMax, f[preMask])
				for sub := preMask; sub > 0; sub = (sub - 1) & preMask {
					curMax = max(curMax, f[sub])
				}
				ff[mask] = max(ff[mask], curMax+curCnt)
			}
			ans = max(ans, ff[mask])
		}
		preMax = ans
		f = ff
	}

	return
}

func max(a, b int) int { if a > b { return a }; return b }

golang 解法, 执行用时: 0 ms, 内存消耗: 2.6 MB, 提交时间: 2023-10-12 09:35:32

func maxStudents(seats [][]byte) int {
	var (
		// 某一行中处于 state i 时,可以坐 stateCount[i] 个学生
		stateCount = make([]int, 256)
		//  前 i 排在第 i 排处于 state j 时可以坐 lineStateCount[i][j] 个学生
		lineStateCount = make([][]int, 9)
		badSeats       = make([]int, 9)
		lenX           = len(seats)
		lenY           = len(seats[0])
		i, j, k        int
		ans            = 0
	)
	for i = 1; i < 256; i++ {
		stateCount[i] = stateCount[i>>1] + (i & 1)
	}
	for i = 0; i <= lenX; i++ {
		lineStateCount[i] = make([]int, 256)
	}
	for i = 0; i < lenX; i++ {
		badSeats[i] = 0
		for j = 0; j < lenY; j++ {
			if seats[i][j] == '#' {
				badSeats[i] |= 1 << j
			}
		}
	}
	lineStateCount[0][0] = 0
	for i = 0; i < lenX; i++ {
		// 对于第 i 排的 state j 作判断
		for j = 0; j < 1<<lenY; j++ {
			// 没有坏座位: j&badSeats[i] == 0
			// 对于每个坐了人的座位,左右都没有人:j&j>>1 == 0 && j&j<<1 == 0
			if j&badSeats[i] == 0 && j&(j>>1) == 0 && j&(j<<1) == 0 {
				for k = 0; k < 1<<lenY; k++ {
					// 对于每个坐了人的座位,左前和右前都没有人
					if j&(k>>1) == 0 && j&(k<<1) == 0 {
						// stateCount[j]:状态 j 下可以这一排可以坐多少人
						lineStateCount[i+1][j] = max(lineStateCount[i+1][j], lineStateCount[i][k]+stateCount[j])
					}
				}
			}
		}
	}
	for i = 0; i < 1<<lenY; i++ {
		ans = max(ans, lineStateCount[lenX][i])
	}
	return ans
}

func max(a, b int) int { if a > b { return a }; return b }

上一题