列表

详情


1158. 市场分析 I

Table: Users

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| join_date      | date    |
| favorite_brand | varchar |
+----------------+---------+
此表主键是 user_id。
表中描述了购物网站的用户信息,用户可以在此网站上进行商品买卖。

 

Table: Orders

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| order_id      | int     |
| order_date    | date    |
| item_id       | int     |
| buyer_id      | int     |
| seller_id     | int     |
+---------------+---------+
此表主键是 order_id。
外键是 item_id 和(buyer_id,seller_id)。

 

Table: Items

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| item_id       | int     |
| item_brand    | varchar |
+---------------+---------+
此表主键是 item_id。

 

请写出一条SQL语句以查询每个用户的注册日期和在 2019 年作为买家的订单总数。

任意顺序 返回结果表。

查询结果格式如下。

 

示例 1:

输入:
Users 表:
+---------+------------+----------------+
| user_id | join_date  | favorite_brand |
+---------+------------+----------------+
| 1       | 2018-01-01 | Lenovo         |
| 2       | 2018-02-09 | Samsung        |
| 3       | 2018-01-19 | LG             |
| 4       | 2018-05-21 | HP             |
+---------+------------+----------------+
Orders 表:
+----------+------------+---------+----------+-----------+
| order_id | order_date | item_id | buyer_id | seller_id |
+----------+------------+---------+----------+-----------+
| 1        | 2019-08-01 | 4       | 1        | 2         |
| 2        | 2018-08-02 | 2       | 1        | 3         |
| 3        | 2019-08-03 | 3       | 2        | 3         |
| 4        | 2018-08-04 | 1       | 4        | 2         |
| 5        | 2018-08-04 | 1       | 3        | 4         |
| 6        | 2019-08-05 | 2       | 2        | 4         |
+----------+------------+---------+----------+-----------+
Items 表:
+---------+------------+
| item_id | item_brand |
+---------+------------+
| 1       | Samsung    |
| 2       | Lenovo     |
| 3       | LG         |
| 4       | HP         |
+---------+------------+
输出:
+-----------+------------+----------------+
| buyer_id  | join_date  | orders_in_2019 |
+-----------+------------+----------------+
| 1         | 2018-01-01 | 1              |
| 2         | 2018-02-09 | 2              |
| 3         | 2018-01-19 | 0              |
| 4         | 2018-05-21 | 0              |
+-----------+------------+----------------+

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
# Write your MySQL query statement below

pythondata 解法, 执行用时: 396 ms, 内存消耗: 61.5 MB, 提交时间: 2023-09-17 10:32:58

import pandas as pd

def market_analysis(users: pd.DataFrame, orders: pd.DataFrame, items: pd.DataFrame) -> pd.DataFrame:
    #筛选orders表2019年的订单,按buyer_id分组计数
    tmp = orders[orders['order_date'].dt.year==2019].groupby('buyer_id').count()[['order_id']]
    #users表左关联第1步的结果集
    return users.join(tmp,on='user_id').fillna(0)[['user_id','join_date','order_id']].rename(columns={'user_id':'buyer_id','order_id':'orders_in_2019'})
    

def market_analysis2(users: pd.DataFrame, orders: pd.DataFrame, items: pd.DataFrame) -> pd.DataFrame:
    min_date, max_date = pd.to_datetime('2019-01-01'), pd.to_datetime('2019-12-30')
    orders_df = orders[(orders['order_date']>=min_date) & (orders['order_date']<=max_date)]
    orders_df = orders_df.groupby('buyer_id')['order_date'].count().reset_index()
    df = pd.merge(users,orders_df,how='left',left_on='user_id',right_on='buyer_id').fillna(0)
    df.columns = ['buyer_id','join_date','x','y','orders_in_2019']
    return df[['buyer_id','join_date','orders_in_2019']]
    

def market_analysis3(users: pd.DataFrame, orders: pd.DataFrame, items: pd.DataFrame) -> pd.DataFrame:
    orders = orders[orders['order_date'].dt.year == 2019].groupby('buyer_id').size().reset_index()
    orders = orders.rename(columns={0:'orders_in_2019'})
    merged = pd.merge(users,orders,left_on='user_id',right_on='buyer_id',how='left').fillna(0)
    merged = merged.drop(columns=['buyer_id']).rename(columns={'user_id':'buyer_id'})
    return merged[['buyer_id','join_date','orders_in_2019']]

def market_analysis4(users: pd.DataFrame, orders: pd.DataFrame, items: pd.DataFrame) -> pd.DataFrame:
    orders.loc[orders['order_date'].between('2019-01-01','2019-12-31','both'),'flag'] = '1'
    orders = orders.loc[orders['flag']=='1']
    orders = orders.groupby('buyer_id').agg({'order_date':'count'})
    orders = orders.reset_index()
    ans = users.merge(orders,how='left',left_on='user_id',right_on='buyer_id')
    ans = ans.fillna(0)
    ans = ans[['user_id','join_date','order_date']]
    ans['order_date'] = ans['order_date'].astype(int)
    ans = ans.rename(columns={'user_id':'buyer_id','order_date':'orders_in_2019'})
    return ans

mysql 解法, 执行用时: 1325 ms, 内存消耗: 0 B, 提交时间: 2022-06-06 10:24:24

# Write your MySQL query statement below
select u.user_id as buyer_id, u.join_date, ifnull(b.cnt, 0) as orders_in_2019
from users u
left join (
    select buyer_id, count(order_id) cnt 
    from orders
    where order_date between '2019-01-01' and '2019-12-31'
    group by buyer_id
) b
on u.user_id = b.buyer_id

mysql 解法, 执行用时: 1354 ms, 内存消耗: 0 B, 提交时间: 2022-05-27 15:09:29

# Write your MySQL query statement below
select u.user_id as buyer_id, u.join_date, ifnull(b.cnt, 0) as orders_in_2019
from users u
left join (
    select buyer_id, count(order_id) cnt 
    from orders
    where order_date between '2019-01-01' and '2019-12-31'
    group by buyer_id
) b
on u.user_id = b.buyer_id

上一题