class Solution {
public:
int longestSubarray(vector<int>& nums, int limit) {
}
};
1438. 绝对差不超过限制的最长连续子数组
给你一个整数数组 nums
,和一个表示限制的整数 limit
,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit
。
如果不存在满足条件的子数组,则返回 0
。
示例 1:
输入:nums = [8,2,4,7], limit = 4 输出:2 解释:所有子数组如下: [8] 最大绝对差 |8-8| = 0 <= 4. [8,2] 最大绝对差 |8-2| = 6 > 4. [8,2,4] 最大绝对差 |8-2| = 6 > 4. [8,2,4,7] 最大绝对差 |8-2| = 6 > 4. [2] 最大绝对差 |2-2| = 0 <= 4. [2,4] 最大绝对差 |2-4| = 2 <= 4. [2,4,7] 最大绝对差 |2-7| = 5 > 4. [4] 最大绝对差 |4-4| = 0 <= 4. [4,7] 最大绝对差 |4-7| = 3 <= 4. [7] 最大绝对差 |7-7| = 0 <= 4. 因此,满足题意的最长子数组的长度为 2 。
示例 2:
输入:nums = [10,1,2,4,7,2], limit = 5 输出:4 解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0 输出:3
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
0 <= limit <= 10^9
原站题解
golang 解法, 执行用时: 56 ms, 内存消耗: 8.9 MB, 提交时间: 2023-05-30 10:25:29
func longestSubarray(nums []int, limit int) (ans int) { var minQ, maxQ []int left := 0 for right, v := range nums { for len(minQ) > 0 && minQ[len(minQ)-1] > v { minQ = minQ[:len(minQ)-1] } minQ = append(minQ, v) for len(maxQ) > 0 && maxQ[len(maxQ)-1] < v { maxQ = maxQ[:len(maxQ)-1] } maxQ = append(maxQ, v) for len(minQ) > 0 && len(maxQ) > 0 && maxQ[0]-minQ[0] > limit { if nums[left] == minQ[0] { minQ = minQ[1:] } if nums[left] == maxQ[0] { maxQ = maxQ[1:] } left++ } ans = max(ans, right-left+1) } return } func max(a, b int) int { if a > b { return a } return b }
python3 解法, 执行用时: 264 ms, 内存消耗: 23.6 MB, 提交时间: 2023-05-30 10:25:11
class Solution: def longestSubarray(self, nums: List[int], limit: int) -> int: n = len(nums) queMax, queMin = deque(), deque() left = right = ret = 0 while right < n: while queMax and queMax[-1] < nums[right]: queMax.pop() while queMin and queMin[-1] > nums[right]: queMin.pop() queMax.append(nums[right]) queMin.append(nums[right]) while queMax and queMin and queMax[0] - queMin[0] > limit: if nums[left] == queMin[0]: queMin.popleft() if nums[left] == queMax[0]: queMax.popleft() left += 1 ret = max(ret, right - left + 1) right += 1 return ret
java 解法, 执行用时: 30 ms, 内存消耗: 54.9 MB, 提交时间: 2023-05-30 10:24:43
class Solution { public int longestSubarray(int[] nums, int limit) { Deque<Integer> queMax = new LinkedList<Integer>(); Deque<Integer> queMin = new LinkedList<Integer>(); int n = nums.length; int left = 0, right = 0; int ret = 0; while (right < n) { while (!queMax.isEmpty() && queMax.peekLast() < nums[right]) { queMax.pollLast(); } while (!queMin.isEmpty() && queMin.peekLast() > nums[right]) { queMin.pollLast(); } queMax.offerLast(nums[right]); queMin.offerLast(nums[right]); while (!queMax.isEmpty() && !queMin.isEmpty() && queMax.peekFirst() - queMin.peekFirst() > limit) { if (nums[left] == queMin.peekFirst()) { queMin.pollFirst(); } if (nums[left] == queMax.peekFirst()) { queMax.pollFirst(); } left++; } ret = Math.max(ret, right - left + 1); right++; } return ret; } }
cpp 解法, 执行用时: 200 ms, 内存消耗: 76.7 MB, 提交时间: 2023-05-30 10:24:19
class Solution { public: int longestSubarray(vector<int>& nums, int limit) { multiset<int> s; int n = nums.size(); int left = 0, right = 0; int ret = 0; while (right < n) { s.insert(nums[right]); while (*s.rbegin() - *s.begin() > limit) { s.erase(s.find(nums[left++])); } ret = max(ret, right - left + 1); right++; } return ret; } };
java 解法, 执行用时: 65 ms, 内存消耗: 54 MB, 提交时间: 2023-05-30 10:24:06
class Solution { public int longestSubarray(int[] nums, int limit) { TreeMap<Integer, Integer> map = new TreeMap<Integer, Integer>(); int n = nums.length; int left = 0, right = 0; int ret = 0; while (right < n) { map.put(nums[right], map.getOrDefault(nums[right], 0) + 1); while (map.lastKey() - map.firstKey() > limit) { map.put(nums[left], map.get(nums[left]) - 1); if (map.get(nums[left]) == 0) { map.remove(nums[left]); } left++; } ret = Math.max(ret, right - left + 1); right++; } return ret; } }
python3 解法, 执行用时: 1092 ms, 内存消耗: 24.6 MB, 提交时间: 2023-05-30 10:23:42
# 滑动窗口 + 有序集合 class Solution: def longestSubarray(self, nums: List[int], limit: int) -> int: from sortedcontainers import SortedList s = SortedList() n = len(nums) left = right = ret = 0 while right < n: s.add(nums[right]) while s[-1] - s[0] > limit: s.remove(nums[left]) left += 1 ret = max(ret, right - left + 1) right += 1 return ret