列表

详情


460. LFU 缓存

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 getput 操作,使用计数器的值将会递增。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

 

示例:

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1);   // cache=[1,_], cnt(1)=1
lfu.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1);      // 返回 1
                 // cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
                 // cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
                 // cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4);      // 返回 4
                 // cache=[3,4], cnt(4)=2, cnt(3)=3

 

提示:

相似题目

LRU 缓存

设计内存文件系统

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class LFUCache { public: LFUCache(int capacity) { } int get(int key) { } void put(int key, int value) { } }; /** * Your LFUCache object will be instantiated and called as such: * LFUCache* obj = new LFUCache(capacity); * int param_1 = obj->get(key); * obj->put(key,value); */

cpp 解法, 执行用时: 572 ms, 内存消耗: 176.2 MB, 提交时间: 2023-09-25 07:32:00

// 缓存的节点信息
struct Node {
    int key, val, freq;
    Node(int _key,int _val,int _freq): key(_key), val(_val), freq(_freq){}
};
class LFUCache {
    int minfreq, capacity;
    unordered_map<int, list<Node>::iterator> key_table;
    unordered_map<int, list<Node>> freq_table;
public:
    LFUCache(int _capacity) {
        minfreq = 0;
        capacity = _capacity;
        key_table.clear();
        freq_table.clear();
    }
    
    int get(int key) {
        if (capacity == 0) return -1;
        auto it = key_table.find(key);
        if (it == key_table.end()) return -1;
        list<Node>::iterator node = it -> second;
        int val = node -> val, freq = node -> freq;
        freq_table[freq].erase(node);
        // 如果当前链表为空,我们需要在哈希表中删除,且更新minFreq
        if (freq_table[freq].size() == 0) {
            freq_table.erase(freq);
            if (minfreq == freq) minfreq += 1;
        }
        // 插入到 freq + 1 中
        freq_table[freq + 1].push_front(Node(key, val, freq + 1));
        key_table[key] = freq_table[freq + 1].begin();
        return val;
    }
    
    void put(int key, int value) {
        if (capacity == 0) return;
        auto it = key_table.find(key);
        if (it == key_table.end()) {
            // 缓存已满,需要进行删除操作
            if (key_table.size() == capacity) {
                // 通过 minFreq 拿到 freq_table[minFreq] 链表的末尾节点
                auto it2 = freq_table[minfreq].back();
                key_table.erase(it2.key);
                freq_table[minfreq].pop_back();
                if (freq_table[minfreq].size() == 0) {
                    freq_table.erase(minfreq);
                }
            } 
            freq_table[1].push_front(Node(key, value, 1));
            key_table[key] = freq_table[1].begin();
            minfreq = 1;
        } else {
            // 与 get 操作基本一致,除了需要更新缓存的值
            list<Node>::iterator node = it -> second;
            int freq = node -> freq;
            freq_table[freq].erase(node);
            if (freq_table[freq].size() == 0) {
                freq_table.erase(freq);
                if (minfreq == freq) minfreq += 1;
            }
            freq_table[freq + 1].push_front(Node(key, value, freq + 1));
            key_table[key] = freq_table[freq + 1].begin();
        }
    }
};

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache* obj = new LFUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */

cpp 解法, 执行用时: 464 ms, 内存消耗: 178.6 MB, 提交时间: 2023-09-25 07:31:37

struct Node {
    int cnt, time, key, value;

    Node(int _cnt, int _time, int _key, int _value):cnt(_cnt), time(_time), key(_key), value(_value){}
    
    bool operator < (const Node& rhs) const {
        return cnt == rhs.cnt ? time < rhs.time : cnt < rhs.cnt;
    }
};
class LFUCache {
    // 缓存容量,时间戳
    int capacity, time;
    unordered_map<int, Node> key_table;
    set<Node> S;
public:
    LFUCache(int _capacity) {
        capacity = _capacity;
        time = 0;
        key_table.clear();
        S.clear();
    }
    
    int get(int key) {
        if (capacity == 0) return -1;
        auto it = key_table.find(key);
        // 如果哈希表中没有键 key,返回 -1
        if (it == key_table.end()) return -1;
        // 从哈希表中得到旧的缓存
        Node cache = it -> second;
        // 从平衡二叉树中删除旧的缓存
        S.erase(cache);
        // 将旧缓存更新
        cache.cnt += 1;
        cache.time = ++time;
        // 将新缓存重新放入哈希表和平衡二叉树中
        S.insert(cache);
        it -> second = cache;
        return cache.value;
    }
    
    void put(int key, int value) {
        if (capacity == 0) return;
        auto it = key_table.find(key);
        if (it == key_table.end()) {
            // 如果到达缓存容量上限
            if (key_table.size() == capacity) {
                // 从哈希表和平衡二叉树中删除最近最少使用的缓存
                key_table.erase(S.begin() -> key);
                S.erase(S.begin());
            }
            // 创建新的缓存
            Node cache = Node(1, ++time, key, value);
            // 将新缓存放入哈希表和平衡二叉树中
            key_table.insert(make_pair(key, cache));
            S.insert(cache);
        }
        else {
            // 这里和 get() 函数类似
            Node cache = it -> second;
            S.erase(cache);
            cache.cnt += 1;
            cache.time = ++time;
            cache.value = value;
            S.insert(cache);
            it -> second = cache;
        }
    }
};

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache* obj = new LFUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */

golang 解法, 执行用时: 444 ms, 内存消耗: 73 MB, 提交时间: 2023-09-11 11:13:00

type LFUCache struct {
  cache map[int]*Node
  freq map[int]*DoubleList
  ncap, size, minFreq int
}

func Constructor(capacity int) LFUCache {
  return LFUCache {
    cache: make(map[int]*Node),
    freq: make(map[int]*DoubleList),
    ncap: capacity,
  }
}

func (this *LFUCache) Get(key int) int {
  if node, ok := this.cache[key]; ok {
    this.IncFreq(node)
    return node.val
  }
  return -1
}

func (this *LFUCache) Put(key, value int) {
  if this.ncap == 0 {
    return
  }
  if node, ok := this.cache[key]; ok {
    node.val = value
    this.IncFreq(node)
  } else {
    if this.size >= this.ncap {
      node := this.freq[this.minFreq].RemoveLast()
      delete(this.cache, node.key)
      this.size--
    }
    x := &Node{key: key, val: value, freq: 1}
    this.cache[key] = x
    if this.freq[1] == nil {
      this.freq[1] = CreateDL()
    }
    this.freq[1].AddFirst(x)
    this.minFreq = 1
    this.size++
  }
}

func (this *LFUCache) IncFreq(node *Node) {
  _freq := node.freq
  this.freq[_freq].Remove(node)
  if this.minFreq == _freq && this.freq[_freq].IsEmpty() {
    this.minFreq++
    delete(this.freq, _freq)
  }

  node.freq++
  if this.freq[node.freq] == nil {
    this.freq[node.freq] = CreateDL()
  }
  this.freq[node.freq].AddFirst(node)
}

type DoubleList struct {
  head, tail *Node
}

type Node struct {
  prev, next *Node
  key, val, freq int
}

func CreateDL() *DoubleList {
  head, tail := &Node{}, &Node{}
  head.next, tail.prev = tail, head
  return &DoubleList {
    head: head,
    tail: tail,
  }
}

func (this *DoubleList) AddFirst(node *Node) {
  node.next = this.head.next
  node.prev = this.head

  this.head.next.prev = node
  this.head.next = node
}

func (this *DoubleList) Remove(node *Node) {
  node.prev.next = node.next
  node.next.prev = node.prev

  node.next = nil
  node.prev = nil
}

func (this *DoubleList) RemoveLast() *Node {
  if this.IsEmpty() {
    return nil
  }

  last := this.tail.prev
  this.Remove(last)

  return last
}

func (this *DoubleList) IsEmpty() bool {
  return this.head.next == this.tail
}

/**
 * Your LFUCache object will be instantiated and called as such:
 * obj := Constructor(capacity);
 * param_1 := obj.Get(key);
 * obj.Put(key,value);
 */

python3 解法, 执行用时: 632 ms, 内存消耗: 77.8 MB, 提交时间: 2023-09-11 11:07:25

class Node:
    def __init__(self, key, val, pre=None, nex=None, freq=0):
        self.pre = pre
        self.nex = nex
        self.freq = freq
        self.val = val
        self.key = key
        
    def insert(self, nex):
        nex.pre = self
        nex.nex = self.nex
        self.nex.pre = nex
        self.nex = nex
    
def create_linked_list():
    head = Node(0, 0)
    tail = Node(0, 0)
    head.nex = tail
    tail.pre = head
    return (head, tail)

class LFUCache:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.size = 0
        self.minFreq = 0
        self.freqMap = collections.defaultdict(create_linked_list)
        self.keyMap = {}

    def delete(self, node):
        if node.pre:
            node.pre.nex = node.nex
            node.nex.pre = node.pre
            if node.pre is self.freqMap[node.freq][0] and node.nex is self.freqMap[node.freq][-1]:
                self.freqMap.pop(node.freq)
        return node.key
        
    def increase(self, node):
        node.freq += 1
        self.delete(node)
        self.freqMap[node.freq][-1].pre.insert(node)
        if node.freq == 1:
            self.minFreq = 1
        elif self.minFreq == node.freq - 1:
            head, tail = self.freqMap[node.freq - 1]
            if head.nex is tail:
                self.minFreq = node.freq

    def get(self, key: int) -> int:
        if key in self.keyMap:
            self.increase(self.keyMap[key])
            return self.keyMap[key].val
        return -1

    def put(self, key: int, value: int) -> None:
        if self.capacity != 0:
            if key in self.keyMap:
                node = self.keyMap[key]
                node.val = value
            else:
                node = Node(key, value)
                self.keyMap[key] = node
                self.size += 1
            if self.size > self.capacity:
                self.size -= 1
                deleted = self.delete(self.freqMap[self.minFreq][0].nex)
                self.keyMap.pop(deleted)
            self.increase(node)


# Your LFUCache object will be instantiated and called as such:
# obj = LFUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

java 解法, 执行用时: 56 ms, 内存消耗: 123.8 MB, 提交时间: 2023-09-11 11:06:59

class LFUCache {
    int minfreq, capacity;
    Map<Integer, Node> keyTable;
    Map<Integer, DoublyLinkedList> freqTable;

    public LFUCache(int capacity) {
        this.minfreq = 0;
        this.capacity = capacity;
        keyTable = new HashMap<Integer, Node>();
        freqTable = new HashMap<Integer, DoublyLinkedList>();
    }
    
    public int get(int key) {
        if (capacity == 0) {
            return -1;
        }
        if (!keyTable.containsKey(key)) {
            return -1;
        }
        Node node = keyTable.get(key);
        int val = node.val, freq = node.freq;
        freqTable.get(freq).remove(node);
        // 如果当前链表为空,我们需要在哈希表中删除,且更新minFreq
        if (freqTable.get(freq).size == 0) {
            freqTable.remove(freq);
            if (minfreq == freq) {
                minfreq += 1;
            }
        }
        // 插入到 freq + 1 中
        DoublyLinkedList list = freqTable.getOrDefault(freq + 1, new DoublyLinkedList());
        list.addFirst(new Node(key, val, freq + 1));
        freqTable.put(freq + 1, list);
        keyTable.put(key, freqTable.get(freq + 1).getHead());
        return val;
    }
    
    public void put(int key, int value) {
        if (capacity == 0) {
            return;
        }
        if (!keyTable.containsKey(key)) {
            // 缓存已满,需要进行删除操作
            if (keyTable.size() == capacity) {
                // 通过 minFreq 拿到 freqTable[minFreq] 链表的末尾节点
                Node node = freqTable.get(minfreq).getTail();
                keyTable.remove(node.key);
                freqTable.get(minfreq).remove(node);
                if (freqTable.get(minfreq).size == 0) {
                    freqTable.remove(minfreq);
                }
            }
            DoublyLinkedList list = freqTable.getOrDefault(1, new DoublyLinkedList());
            list.addFirst(new Node(key, value, 1));
            freqTable.put(1, list);
            keyTable.put(key, freqTable.get(1).getHead());
            minfreq = 1;
        } else {
            // 与 get 操作基本一致,除了需要更新缓存的值
            Node node = keyTable.get(key);
            int freq = node.freq;
            freqTable.get(freq).remove(node);
            if (freqTable.get(freq).size == 0) {
                freqTable.remove(freq);
                if (minfreq == freq) {
                    minfreq += 1;
                }
            }
            DoublyLinkedList list = freqTable.getOrDefault(freq + 1, new DoublyLinkedList());
            list.addFirst(new Node(key, value, freq + 1));
            freqTable.put(freq + 1, list);
            keyTable.put(key, freqTable.get(freq + 1).getHead());
        }
    }
}

class Node {
    int key, val, freq;
    Node prev, next;

    Node() {
        this(-1, -1, 0);
    }

    Node(int key, int val, int freq) {
        this.key = key;
        this.val = val;
        this.freq = freq;
    }
}

class DoublyLinkedList {
    Node dummyHead, dummyTail;
    int size;

    DoublyLinkedList() {
        dummyHead = new Node();
        dummyTail = new Node();
        dummyHead.next = dummyTail;
        dummyTail.prev = dummyHead;
        size = 0;
    }

    public void addFirst(Node node) {
        Node prevHead = dummyHead.next;
        node.prev = dummyHead;
        dummyHead.next = node;
        node.next = prevHead;
        prevHead.prev = node;
        size++;
    }

    public void remove(Node node) {
        Node prev = node.prev, next = node.next;
        prev.next = next;
        next.prev = prev;
        size--;
    }

    public Node getHead() {
        return dummyHead.next;
    }

    public Node getTail() {
        return dummyTail.prev;
    }
}

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache obj = new LFUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

java 解法, 执行用时: 89 ms, 内存消耗: 126 MB, 提交时间: 2023-09-11 11:06:35

class LFUCache {
    // 缓存容量,时间戳
    int capacity, time;
    Map<Integer, Node> key_table;
    TreeSet<Node> S;

    public LFUCache(int capacity) {
        this.capacity = capacity;
        this.time = 0;
        key_table = new HashMap<Integer, Node>();
        S = new TreeSet<Node>();
    }
    
    public int get(int key) {
        if (capacity == 0) {
            return -1;
        }
        // 如果哈希表中没有键 key,返回 -1
        if (!key_table.containsKey(key)) {
            return -1;
        }
        // 从哈希表中得到旧的缓存
        Node cache = key_table.get(key);
        // 从平衡二叉树中删除旧的缓存
        S.remove(cache);
        // 将旧缓存更新
        cache.cnt += 1;
        cache.time = ++time;
        // 将新缓存重新放入哈希表和平衡二叉树中
        S.add(cache);
        key_table.put(key, cache);
        return cache.value;
    }
    
    public void put(int key, int value) {
        if (capacity == 0) {
            return;
        }
        if (!key_table.containsKey(key)) {
            // 如果到达缓存容量上限
            if (key_table.size() == capacity) {
                // 从哈希表和平衡二叉树中删除最近最少使用的缓存
                key_table.remove(S.first().key);
                S.remove(S.first());
            }
            // 创建新的缓存
            Node cache = new Node(1, ++time, key, value);
            // 将新缓存放入哈希表和平衡二叉树中
            key_table.put(key, cache);
            S.add(cache);
        } else {
            // 这里和 get() 函数类似
            Node cache = key_table.get(key);
            S.remove(cache);
            cache.cnt += 1;
            cache.time = ++time;
            cache.value = value;
            S.add(cache);
            key_table.put(key, cache);
        }
    }
}

class Node implements Comparable<Node> {
    int cnt, time, key, value;

    Node(int cnt, int time, int key, int value) {
        this.cnt = cnt;
        this.time = time;
        this.key = key;
        this.value = value;
    }

    public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof Node) {
            Node rhs = (Node) anObject;
            return this.cnt == rhs.cnt && this.time == rhs.time;
        }
        return false;
    }

    public int compareTo(Node rhs) {
        return cnt == rhs.cnt ? time - rhs.time : cnt - rhs.cnt;
    }

    public int hashCode() {
        return cnt * 1000000007 + time;
    }
}

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache obj = new LFUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

php 解法, 执行用时: 4484 ms, 内存消耗: 143.9 MB, 提交时间: 2023-09-11 11:05:46

class LFUCache
{
    public $minFreq;
    public $capacity;
    public $freqTable;
    public $keyTable;
    /**
     * @param Integer $capacity
     */
    function __construct($capacity)
    {
        $this->minFreq = 0;
        $this->capacity = $capacity;
        $this->freqTable = [];
        $this->keyTable = [];
    }

    /**
     * @param Integer $key
     * @return Integer
     */
    function get($key)
    {
        // 每次访问一个已经存在的元素的时候
        // 应该先把结点从当前所属的访问次数双链表里删除,
        // 然后再添加到它「下一个访问次数」的双向链表的头部;
        if ($this->capacity <= 0) return -1;
        if (!isset($this->keyTable[$key])) return -1;
        $node = $this->keyTable[$key];
        $list = $this->freqTable[$node->freq];
        if ($node->freq == $this->minFreq && count($list) == 1) $this->minFreq++;
        $index = array_search($key, $list);
        unset($this->freqTable[$node->freq][$index]);
        if (!isset($this->freqTable[$node->freq + 1])) $this->freqTable[$node->freq + 1] = [];
        array_unshift($this->freqTable[$node->freq + 1], $key);
        $node->freq++;
        $this->keyTable[$key] = $node;
        return $node->value;
    }

    /**
     * @param Integer $key
     * @param Integer $value
     * @return null
     */
    function put($key, $value)
    {
        if (isset($this->keyTable[$key])) {
            if ($this->capacity <= 0) return -1;
            $node = $this->keyTable[$key];
            $list = $this->freqTable[$node->freq];
            if ($node->freq == $this->minFreq && count($list) == 1) $this->minFreq++;
            $index = array_search($key, $list);
            unset($this->freqTable[$node->freq][$index]);
            if (!isset($this->freqTable[$node->freq + 1])) $this->freqTable[$node->freq + 1] = [];
            array_unshift($this->freqTable[$node->freq + 1], $key);
            $node->value = $value;
            $node->freq++;
            $this->keyTable[$key] = $node;
            return;
        }

        // 1、如果满了,先删除访问次数最小的的末尾结点,
        // 再删除 map 里对应的 key
        if ($this->capacity == count($this->keyTable)) {
            if (isset($this->freqTable[$this->minFreq]) && !empty($this->freqTable[$this->minFreq])) {
                $tail = array_pop($this->freqTable[$this->minFreq]);
                unset($this->keyTable[$tail]);
            }
        }

        // 2、再创建新结点放在访问次数为 1 的双向链表的前面
        $node = new LFUNode($key, $value, 1);
        $this->keyTable[$key] = $node;
        if (!isset($this->freqTable[1])) {
            $this->freqTable[1] = [];
        }
        $this->minFreq = 1;
        array_unshift($this->freqTable[1], $key);
    }
}

class LFUNode
{
    public $key;
    public $value;
    public $freq;
    public function __construct($key, $value, $freq)
    {
        $this->key = $key;
        $this->value = $value;
        $this->freq = $freq;
    }
}

/**
 * Your LFUCache object will be instantiated and called as such:
 * $obj = LFUCache($capacity);
 * $ret_1 = $obj->get($key);
 * $obj->put($key, $value);
 */

上一题