列表

详情


185. 部门工资前三高的所有员工

表: Employee

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| id           | int     |
| name         | varchar |
| salary       | int     |
| departmentId | int     |
+--------------+---------+
Id是该表的主键列。
departmentId是Department表中ID的外键。
该表的每一行都表示员工的ID、姓名和工资。它还包含了他们部门的ID。

 

表: Department

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| id          | int     |
| name        | varchar |
+-------------+---------+
Id是该表的主键列。
该表的每一行表示部门ID和部门名。

 

公司的主管们感兴趣的是公司每个部门中谁赚的钱最多。一个部门的 高收入者 是指一个员工的工资在该部门的 不同 工资中 排名前三

编写一个SQL查询,找出每个部门中 收入高的员工

任意顺序 返回结果表。

查询结果格式如下所示。

 

示例 1:

输入: 
Employee 表:
+----+-------+--------+--------------+
| id | name  | salary | departmentId |
+----+-------+--------+--------------+
| 1  | Joe   | 85000  | 1            |
| 2  | Henry | 80000  | 2            |
| 3  | Sam   | 60000  | 2            |
| 4  | Max   | 90000  | 1            |
| 5  | Janet | 69000  | 1            |
| 6  | Randy | 85000  | 1            |
| 7  | Will  | 70000  | 1            |
+----+-------+--------+--------------+
Department  表:
+----+-------+
| id | name  |
+----+-------+
| 1  | IT    |
| 2  | Sales |
+----+-------+
输出: 
+------------+----------+--------+
| Department | Employee | Salary |
+------------+----------+--------+
| IT         | Max      | 90000  |
| IT         | Joe      | 85000  |
| IT         | Randy    | 85000  |
| IT         | Will     | 70000  |
| Sales      | Henry    | 80000  |
| Sales      | Sam      | 60000  |
+------------+----------+--------+
解释:
在IT部门:
- Max的工资最高
- 兰迪和乔都赚取第二高的独特的薪水
- 威尔的薪水是第三高的

在销售部:
- 亨利的工资最高
- 山姆的薪水第二高
- 没有第三高的工资,因为只有两名员工

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
# Write your MySQL query statement below

pythondata 解法, 执行用时: 415 ms, 内存消耗: 67.2 MB, 提交时间: 2024-05-27 09:40:17

import pandas as pd

def top_three_salaries(employee: pd.DataFrame, department: pd.DataFrame) -> pd.DataFrame:
    # 合并Employee和Department表格
    merged_df = pd.merge(employee, department, left_on='departmentId', right_on='id', how='inner')

    # 使用rank方法计算每个部门工资的排名
    merged_df['rnk'] = merged_df.groupby('name_y')['salary'].rank(method='dense', ascending=False)

    # 筛选出排名前三的记录
    result_df = merged_df[merged_df['rnk'] <= 3][['name_y', 'name_x', 'salary']]

    return result_df.rename({
        'name_y':'Department',
        'name_x':'Employee',
        'salary':'Salary'
    }, axis=1)

pythondata 解法, 执行用时: 442 ms, 内存消耗: 67.9 MB, 提交时间: 2024-05-27 09:39:42

import pandas as pd

def top_three_salaries(employee: pd.DataFrame, department: pd.DataFrame) -> pd.DataFrame:
    # 合并数据
    merged_df = employee.merge(department, left_on='departmentId', right_on='id', how='inner')
    # 使用rank方法得到每个部门的工资排名
    merged_df['rank'] = merged_df.groupby('departmentId')['salary'].rank(method='dense', ascending=False)
    # 选择排名前三的员工
    result_df = merged_df[merged_df['rank'] <= 3]
    #print(result_df) 检查所需重命名的列
    # 选择并重命名所需的列
    result_df = result_df[['name_y', 'name_x', 'salary']]
    result_df.columns = ['Department', 'Employee', 'Salary']
    return result_df.sort_values(by=['Department', 'Salary'], ascending=[True, False])

mysql 解法, 执行用时: 2368 ms, 内存消耗: N/A, 提交时间: 2018-08-22 15:32:53

# Write your MySQL query statement below

select d.Name as Department,e.Name as Employee, e.Salary from Department d, Employee e where e.DepartmentId = d.Id and (select count(distinct Salary) from Employee e2 where e2.DepartmentId=d.Id and e2.Salary > e.Salary) < 3 order by Department;

上一题