2179. 统计数组中好三元组数目
给你两个下标从 0 开始且长度为 n
的整数数组 nums1
和 nums2
,两者都是 [0, 1, ..., n - 1]
的 排列 。
好三元组 指的是 3
个 互不相同 的值,且它们在数组 nums1
和 nums2
中出现顺序保持一致。换句话说,如果我们将 pos1v
记为值 v
在 nums1
中出现的位置,pos2v
为值 v
在 nums2
中的位置,那么一个好三元组定义为 0 <= x, y, z <= n - 1
,且 pos1x < pos1y < pos1z
和 pos2x < pos2y < pos2z
都成立的 (x, y, z)
。
请你返回好三元组的 总数目 。
示例 1:
输入:nums1 = [2,0,1,3], nums2 = [0,1,2,3] 输出:1 解释: 总共有 4 个三元组 (x,y,z) 满足 pos1x < pos1y < pos1z ,分别是 (2,0,1) ,(2,0,3) ,(2,1,3) 和 (0,1,3) 。 这些三元组中,只有 (0,1,3) 满足 pos2x < pos2y < pos2z 。所以只有 1 个好三元组。
示例 2:
输入:nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3] 输出:4 解释:总共有 4 个好三元组 (4,0,3) ,(4,0,2) ,(4,1,3) 和 (4,1,2) 。
提示:
n == nums1.length == nums2.length
3 <= n <= 105
0 <= nums1[i], nums2[i] <= n - 1
nums1
和 nums2
是 [0, 1, ..., n - 1]
的排列。原站题解
typescript 解法, 执行用时: 34 ms, 内存消耗: 70.2 MB, 提交时间: 2025-04-15 09:14:05
class FenwickTree { private tree: number[]; constructor(size: number) { this.tree = new Array(size + 1).fill(0); } update(index: number, delta: number): void { index++; while (index < this.tree.length) { this.tree[index] += delta; index += index & -index; } } query(index: number): number { index++; let res = 0; while (index > 0) { res += this.tree[index]; index -= index & -index; } return res; } } function goodTriplets(nums1: number[], nums2: number[]): number { const n = nums1.length; const pos2 = new Array(n), reversedIndexMapping = new Array(n);; for (let i = 0; i < n; i++) { pos2[nums2[i]] = i; } for (let i = 0; i < n; i++) { reversedIndexMapping[pos2[nums1[i]]] = i; } const tree = new FenwickTree(n); let res = 0; for (let value = 0; value < n; value++) { const pos = reversedIndexMapping[value]; const left = tree.query(pos); tree.update(pos, 1); const right = (n - 1 - pos) - (value - left); res += left * right; } return res; }
rust 解法, 执行用时: 3 ms, 内存消耗: 5.2 MB, 提交时间: 2025-04-15 09:13:46
struct FenwickTree { tree: Vec<i32>, } impl FenwickTree { fn new(size: usize) -> Self { FenwickTree { tree: vec![0; size + 1], } } fn update(&mut self, index: usize, delta: i32) { let mut idx = index + 1; while idx < self.tree.len() { self.tree[idx] += delta; idx += idx & (!idx + 1); } } fn query(&self, index: usize) -> i32 { let mut idx = index + 1; let mut res = 0; while idx > 0 { res += self.tree[idx]; idx -= idx & (!idx + 1); } res } } impl Solution { pub fn good_triplets(nums1: Vec<i32>, nums2: Vec<i32>) -> i64 { let n = nums1.len(); let mut pos2 = vec![0; n]; for (i, &num) in nums2.iter().enumerate() { pos2[num as usize] = i; } let mut reversed_index_mapping = vec![0; n]; for (i, &num) in nums1.iter().enumerate() { reversed_index_mapping[pos2[num as usize]] = i; } let mut tree = FenwickTree::new(n); let mut res = 0i64; for value in 0..n { let pos = reversed_index_mapping[value]; let left = tree.query(pos) as i64; tree.update(pos, 1); let right = (n - 1 - pos) as i64 - (value as i64 - left); res += left * right; } res } }
javascript 解法, 执行用时: 39 ms, 内存消耗: 70.3 MB, 提交时间: 2025-04-15 09:13:27
class FenwickTree { constructor(size) { this.tree = new Array(size + 1).fill(0); } update(index, delta) { index++; while (index < this.tree.length) { this.tree[index] += delta; index += index & -index; } } query(index) { index++; let res = 0; while (index > 0) { res += this.tree[index]; index -= index & -index; } return res; } } /** * @param {number[]} nums1 * @param {number[]} nums2 * @return {number} */ var goodTriplets = function(nums1, nums2) { const n = nums1.length; const pos2 = new Array(n), reversedIndexMapping = new Array(n);; for (let i = 0; i < n; i++) { pos2[nums2[i]] = i; } for (let i = 0; i < n; i++) { reversedIndexMapping[pos2[nums1[i]]] = i; } const tree = new FenwickTree(n); let res = 0; for (let value = 0; value < n; value++) { const pos = reversedIndexMapping[value]; const left = tree.query(pos); tree.update(pos, 1); const right = (n - 1 - pos) - (value - left); res += left * right; } return res; };
python3 解法, 执行用时: 768 ms, 内存消耗: 32.4 MB, 提交时间: 2023-10-08 17:34:06
class Solution: def goodTriplets1(self, nums1: List[int], nums2: List[int]) -> int: n = len(nums1) p = [0] * n for i, x in enumerate(nums1): p[x] = i ans = 0 tree = [0] * (n + 1) for i in range(1, n - 1): # 将 p[nums2[i - 1]] + 1 加入树状数组 j = p[nums2[i - 1]] + 1 while j <= n: tree[j] += 1 j += j & -j # 计算 less y, less = p[nums2[i]], 0 j = y while j: less += tree[j] j &= j - 1 ans += less * (n - 1 - y - (i - less)) return ans # 引入 sortedList def goodTriplets(self, nums1: List[int], nums2: List[int]) -> int: from sortedcontainers import SortedList n = len(nums1) p = [0] * n for i, x in enumerate(nums1): p[x] = i ans = 0 s = SortedList() for i in range(1, n - 1): s.add(p[nums2[i - 1]]) y = p[nums2[i]] less = s.bisect_left(y) ans += less * (n - 1 - y - (i - less)) return ans
golang 解法, 执行用时: 100 ms, 内存消耗: 10.6 MB, 提交时间: 2023-10-08 17:33:18
func goodTriplets(nums1, nums2 []int) (ans int64) { n := len(nums1) p := make([]int, n) for i, v := range nums1 { p[v] = i } tree := make([]int, n+1) for i := 1; i < n-1; i++ { for j := p[nums2[i-1]] + 1; j <= n; j += j & -j { // 将 p[nums2[i-1]]+1 加入树状数组 tree[j]++ } y, less := p[nums2[i]], 0 for j := y; j > 0; j &= j - 1 { // 计算 less less += tree[j] } ans += int64(less) * int64(n-1-y-(i-less)) } return }
cpp 解法, 执行用时: 116 ms, 内存消耗: 80.4 MB, 提交时间: 2023-10-08 17:33:03
class Solution { public: long long goodTriplets(vector<int> &nums1, vector<int> &nums2) { int n = nums1.size(); vector<int> p(n); for (int i = 0; i < n; ++i) p[nums1[i]] = i; long long ans = 0; vector<int> tree(n + 1); for (int i = 1; i < n - 1; ++i) { for (int j = p[nums2[i - 1]] + 1; j <= n; j += j & -j) // 将 p[nums2[i-1]]+1 加入树状数组 ++tree[j]; int y = p[nums2[i]], less = 0; for (int j = y; j; j &= j - 1) // 计算 less less += tree[j]; ans += (long) less * (n - 1 - y - (i - less)); } return ans; } };
java 解法, 执行用时: 10 ms, 内存消耗: 55.4 MB, 提交时间: 2023-10-08 17:32:49
/** * 等价转换 + 树状数组 */ class Solution { public long goodTriplets(int[] nums1, int[] nums2) { var n = nums1.length; var p = new int[n]; for (var i = 0; i < n; ++i) p[nums1[i]] = i; var ans = 0L; var tree = new int[n + 1]; for (var i = 1; i < n - 1; ++i) { for (var j = p[nums2[i - 1]] + 1; j <= n; j += j & -j) // 将 p[nums2[i-1]]+1 加入树状数组 ++tree[j]; var y = p[nums2[i]]; var less = 0; for (var j = y; j > 0; j &= j - 1) // 计算 less less += tree[j]; ans += (long) less * (n - 1 - y - (i - less)); } return ans; } }