class Solution {
public:
vector<vector<int>> constructProductMatrix(vector<vector<int>>& grid) {
}
};
2906. 构造乘积矩阵
给你一个下标从 0 开始、大小为 n * m
的二维整数矩阵 grid
,定义一个下标从 0 开始、大小为 n * m
的的二维矩阵 p
。如果满足以下条件,则称 p
为 grid
的 乘积矩阵 :
p[i][j]
,它的值等于除了 grid[i][j]
外所有元素的乘积。乘积对 12345
取余数。返回 grid
的乘积矩阵。
示例 1:
输入:grid = [[1,2],[3,4]] 输出:[[24,12],[8,6]] 解释:p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 所以答案是 [[24,12],[8,6]] 。
示例 2:
输入:grid = [[12345],[2],[1]] 输出:[[2],[0],[0]] 解释:p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2 p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0 ,所以 p[0][1] = 0 p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0 ,所以 p[0][2] = 0 所以答案是 [[2],[0],[0]] 。
提示:
1 <= n == grid.length <= 105
1 <= m == grid[i].length <= 105
2 <= n * m <= 105
1 <= grid[i][j] <= 109
原站题解
java 解法, 执行用时: 13 ms, 内存消耗: 69.7 MB, 提交时间: 2023-10-16 20:52:27
class Solution { public int[][] constructProductMatrix(int[][] grid) { final int MOD = 12345; int n = grid.length, m = grid[0].length; int[][] p = new int[n][m]; long suf = 1; // 后缀乘积 for (int i = n - 1; i >= 0; i--) { for (int j = m - 1; j >= 0; j--) { p[i][j] = (int) suf; // p[i][j] 先初始化成后缀乘积 suf = suf * grid[i][j] % MOD; } } long pre = 1; // 前缀乘积 for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { p[i][j] = (int) (p[i][j] * pre % MOD); // 然后再乘上前缀乘积 pre = pre * grid[i][j] % MOD; } } return p; } }
cpp 解法, 执行用时: 212 ms, 内存消耗: 124 MB, 提交时间: 2023-10-16 20:52:11
class Solution { public: vector<vector<int>> constructProductMatrix(vector<vector<int>> &grid) { const int MOD = 12345; int n = grid.size(), m = grid[0].size(); vector<vector<int>> p(n, vector<int>(m)); long long suf = 1; // 后缀乘积 for (int i = n - 1; i >= 0; i--) { for (int j = m - 1; j >= 0; j--) { p[i][j] = suf; // p[i][j] 先初始化成后缀乘积 suf = suf * grid[i][j] % MOD; } } long long pre = 1; // 前缀乘积 for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { p[i][j] = p[i][j] * pre % MOD; // 然后再乘上前缀乘积 pre = pre * grid[i][j] % MOD; } } return p; } };
golang 解法, 执行用时: 164 ms, 内存消耗: 18.8 MB, 提交时间: 2023-10-16 20:51:57
func constructProductMatrix(grid [][]int) [][]int { const mod = 12345 n, m := len(grid), len(grid[0]) p := make([][]int, n) suf := 1 // 后缀乘积 for i := n - 1; i >= 0; i-- { p[i] = make([]int, m) for j := m - 1; j >= 0; j-- { p[i][j] = suf // p[i][j] 先初始化成后缀乘积 suf = suf * grid[i][j] % mod } } pre := 1 // 前缀乘积 for i, row := range grid { for j, x := range row { p[i][j] = p[i][j] * pre % mod // 然后再乘上前缀乘积 pre = pre * x % mod } } return p }
python3 解法, 执行用时: 240 ms, 内存消耗: 39.9 MB, 提交时间: 2023-10-16 20:51:46
class Solution: def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]: MOD = 12345 n, m = len(grid), len(grid[0]) p = [[0] * m for _ in range(n)] suf = 1 # 后缀乘积 for i in range(n - 1, -1, -1): for j in range(m - 1, -1, -1): p[i][j] = suf # p[i][j] 先初始化成后缀乘积 suf = suf * grid[i][j] % MOD pre = 1 # 前缀乘积 for i, row in enumerate(grid): for j, x in enumerate(row): p[i][j] = p[i][j] * pre % MOD # 然后再乘上前缀乘积 pre = pre * x % MOD return p