741. 摘樱桃
一个N x N的网格(grid)
代表了一块樱桃地,每个格子由以下三种数字的一种来表示:
你的任务是在遵守下列规则的情况下,尽可能的摘到最多樱桃:
示例 1:
输入: grid = [[0, 1, -1], [1, 0, -1], [1, 1, 1]] 输出: 5 解释: 玩家从(0,0)点出发,经过了向下走,向下走,向右走,向右走,到达了点(2, 2)。 在这趟单程中,总共摘到了4颗樱桃,矩阵变成了[[0,1,-1],[0,0,-1],[0,0,0]]。 接着,这名玩家向左走,向上走,向上走,向左走,返回了起始点,又摘到了1颗樱桃。 在旅程中,总共摘到了5颗樱桃,这是可以摘到的最大值了。
说明:
grid
是一个 N
* N
的二维数组,N的取值范围是1 <= N <= 50
。grid[i][j]
都是集合 {-1, 0, 1}
其中的一个数。grid[0][0]
和终点 grid[N-1][N-1]
的值都不会是 -1。原站题解
cpp 解法, 执行用时: 18 ms, 内存消耗: 11.5 MB, 提交时间: 2024-05-06 09:56:23
class Solution { public: int cherryPickup(vector<vector<int>> &grid) { int n = grid.size(); vector<vector<int>> f(n, vector<int>(n, INT_MIN)); f[0][0] = grid[0][0]; for (int k = 1; k < n * 2 - 1; ++k) { for (int x1 = min(k, n - 1); x1 >= max(k - n + 1, 0); --x1) { for (int x2 = min(k, n - 1); x2 >= x1; --x2) { int y1 = k - x1, y2 = k - x2; if (grid[x1][y1] == -1 || grid[x2][y2] == -1) { f[x1][x2] = INT_MIN; continue; } int res = f[x1][x2]; // 都往右 if (x1) { res = max(res, f[x1 - 1][x2]); // 往下,往右 } if (x2) { res = max(res, f[x1][x2 - 1]); // 往右,往下 } if (x1 && x2) { res = max(res, f[x1 - 1][x2 - 1]); // 都往下 } res += grid[x1][y1]; if (x2 != x1) { // 避免重复摘同一个樱桃 res += grid[x2][y2]; } f[x1][x2] = res; } } } return max(f.back().back(), 0); } };
cpp 解法, 执行用时: 27 ms, 内存消耗: 36.8 MB, 提交时间: 2024-05-06 09:55:56
class Solution { public: int cherryPickup(vector<vector<int>> &grid) { int n = grid.size(); vector<vector<vector<int>>> f(n * 2 - 1, vector<vector<int>>(n, vector<int>(n, INT_MIN))); f[0][0][0] = grid[0][0]; for (int k = 1; k < n * 2 - 1; ++k) { for (int x1 = max(k - n + 1, 0); x1 <= min(k, n - 1); ++x1) { int y1 = k - x1; if (grid[x1][y1] == -1) { continue; } for (int x2 = x1; x2 <= min(k, n - 1); ++x2) { int y2 = k - x2; if (grid[x2][y2] == -1) { continue; } int res = f[k - 1][x1][x2]; // 都往右 if (x1) { res = max(res, f[k - 1][x1 - 1][x2]); // 往下,往右 } if (x2) { res = max(res, f[k - 1][x1][x2 - 1]); // 往右,往下 } if (x1 && x2) { res = max(res, f[k - 1][x1 - 1][x2 - 1]); // 都往下 } res += grid[x1][y1]; if (x2 != x1) { // 避免重复摘同一个樱桃 res += grid[x2][y2]; } f[k][x1][x2] = res; } } } return max(f.back().back().back(), 0); } };
java 解法, 执行用时: 10 ms, 内存消耗: 42.4 MB, 提交时间: 2023-06-12 16:02:41
class Solution { public int cherryPickup(int[][] grid) { int n = grid.length; int[][] f = new int[n][n]; for (int i = 0; i < n; ++i) { Arrays.fill(f[i], Integer.MIN_VALUE); } f[0][0] = grid[0][0]; for (int k = 1; k < n * 2 - 1; ++k) { for (int x1 = Math.min(k, n - 1); x1 >= Math.max(k - n + 1, 0); --x1) { for (int x2 = Math.min(k, n - 1); x2 >= x1; --x2) { int y1 = k - x1, y2 = k - x2; if (grid[x1][y1] == -1 || grid[x2][y2] == -1) { f[x1][x2] = Integer.MIN_VALUE; continue; } int res = f[x1][x2]; // 都往右 if (x1 > 0) { res = Math.max(res, f[x1 - 1][x2]); // 往下,往右 } if (x2 > 0) { res = Math.max(res, f[x1][x2 - 1]); // 往右,往下 } if (x1 > 0 && x2 > 0) { res = Math.max(res, f[x1 - 1][x2 - 1]); // 都往下 } res += grid[x1][y1]; if (x2 != x1) { // 避免重复摘同一个樱桃 res += grid[x2][y2]; } f[x1][x2] = res; } } } return Math.max(f[n - 1][n - 1], 0); } }
python3 解法, 执行用时: 348 ms, 内存消耗: 16.2 MB, 提交时间: 2023-06-12 16:02:28
# 优化f[k][x1][x2], 倒序循环x1,x2,优化掉第一维k class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: n = len(grid) f = [[-inf] * n for _ in range(n)] f[0][0] = grid[0][0] for k in range(1, n * 2 - 1): for x1 in range(min(k, n - 1), max(k - n, -1), -1): for x2 in range(min(k, n - 1), x1 - 1, -1): y1, y2 = k - x1, k - x2 if grid[x1][y1] == -1 or grid[x2][y2] == -1: f[x1][x2] = -inf continue res = f[x1][x2] # 都往右 if x1: res = max(res, f[x1 - 1][x2]) # 往下,往右 if x2: res = max(res, f[x1][x2 - 1]) # 往右,往下 if x1 and x2: res = max(res, f[x1 - 1][x2 - 1]) # 都往下 res += grid[x1][y1] if x2 != x1: # 避免重复摘同一个樱桃 res += grid[x2][y2] f[x1][x2] = res return max(f[-1][-1], 0)
golang 解法, 执行用时: 8 ms, 内存消耗: 4.1 MB, 提交时间: 2023-06-12 16:01:15
func cherryPickup(grid [][]int) int { n := len(grid) f := make([][]int, n) for i := range f { f[i] = make([]int, n) for j := range f[i] { f[i][j] = math.MinInt32 } } f[0][0] = grid[0][0] for k := 1; k < n*2-1; k++ { for x1 := min(k, n-1); x1 >= max(k-n+1, 0); x1-- { for x2 := min(k, n-1); x2 >= x1; x2-- { y1, y2 := k-x1, k-x2 if grid[x1][y1] == -1 || grid[x2][y2] == -1 { f[x1][x2] = math.MinInt32 continue } res := f[x1][x2] // 都往右 if x1 > 0 { res = max(res, f[x1-1][x2]) // 往下,往右 } if x2 > 0 { res = max(res, f[x1][x2-1]) // 往右,往下 } if x1 > 0 && x2 > 0 { res = max(res, f[x1-1][x2-1]) // 都往下 } res += grid[x1][y1] if x2 != x1 { // 避免重复摘同一个樱桃 res += grid[x2][y2] } f[x1][x2] = res } } } return max(f[n-1][n-1], 0) } func min(a, b int) int { if a > b { return b } return a } func max(a, b int) int { if b > a { return b } return a }
javascript 解法, 执行用时: 100 ms, 内存消耗: 44.2 MB, 提交时间: 2023-06-12 16:00:06
/** * @param {number[][]} grid * @return {number} */ var cherryPickup = function(grid) { const n = grid.length; const f = new Array(n).fill(0).map(() => new Array(n).fill(-Number.MAX_VALUE)); f[0][0] = grid[0][0]; for (let k = 1; k < n * 2 - 1; ++k) { for (let x1 = Math.min(k, n - 1); x1 >= Math.max(k - n + 1, 0); --x1) { for (let x2 = Math.min(k, n - 1); x2 >= x1; --x2) { const y1 = k - x1, y2 = k - x2; if (grid[x1][y1] === -1 || grid[x2][y2] === -1) { f[x1][x2] = -Number.MAX_VALUE; continue; } let res = f[x1][x2]; // 都往右 if (x1 > 0) { res = Math.max(res, f[x1 - 1][x2]); // 往下,往右 } if (x2 > 0) { res = Math.max(res, f[x1][x2 - 1]); // 往右,往下 } if (x1 > 0 && x2 > 0) { res = Math.max(res, f[x1 - 1][x2 - 1]); //都往下 } res += grid[x1][y1]; if (x2 !== x1) { // 避免重复摘同一个樱桃 res += grid[x2][y2]; } f[x1][x2] = res; } } } return Math.max(f[n - 1][n - 1], 0); };
javascript 解法, 执行用时: 108 ms, 内存消耗: 49.2 MB, 提交时间: 2023-06-12 15:59:46
/** * @param {number[][]} grid * @return {number} */ var cherryPickup = function(grid) { const n = grid.length; const f = new Array(n * 2 - 1).fill(0).map(() => new Array(n).fill(0).map(() => new Array(n).fill(-Number.MAX_VALUE))); f[0][0][0] = grid[0][0]; for (let k = 1; k < n * 2 - 1; ++k) { for (let x1 = Math.max(k - n + 1, 0); x1 <= Math.min(k, n - 1); ++x1) { const y1 = k - x1; if (grid[x1][y1] === -1) { continue; } for (let x2 = x1; x2 <= Math.min(k, n - 1); ++x2) { let y2 = k - x2; if (grid[x2][y2] === -1) { continue; } let res = f[k - 1][x1][x2]; // 都往右 if (x1 > 0) { res = Math.max(res, f[k - 1][x1 - 1][x2]); // 往下,往右 } if (x2 > 0) { res = Math.max(res, f[k - 1][x1][x2 - 1]); // 往右,往下 } if (x1 > 0 && x2 > 0) { res = Math.max(res, f[k - 1][x1 - 1][x2 - 1]); // 都往下 } res += grid[x1][y1]; if (x2 !== x1) { // 避免重复摘同一个樱桃 res += grid[x2][y2]; } f[k][x1][x2] = res; } } } return Math.max(f[n * 2 - 2][n - 1][n - 1], 0); };
golang 解法, 执行用时: 12 ms, 内存消耗: 6.8 MB, 提交时间: 2023-06-12 15:59:01
func cherryPickup(grid [][]int) int { n := len(grid) f := make([][][]int, n*2-1) for i := range f { f[i] = make([][]int, n) for j := range f[i] { f[i][j] = make([]int, n) for k := range f[i][j] { f[i][j][k] = math.MinInt32 } } } f[0][0][0] = grid[0][0] for k := 1; k < n*2-1; k++ { for x1 := max(k-n+1, 0); x1 <= min(k, n-1); x1++ { y1 := k - x1 if grid[x1][y1] == -1 { continue } for x2 := x1; x2 <= min(k, n-1); x2++ { y2 := k - x2 if grid[x2][y2] == -1 { continue } res := f[k-1][x1][x2] // 都往右 if x1 > 0 { res = max(res, f[k-1][x1-1][x2]) // 往下,往右 } if x2 > 0 { res = max(res, f[k-1][x1][x2-1]) // 往右,往下 } if x1 > 0 && x2 > 0 { res = max(res, f[k-1][x1-1][x2-1]) // 都往下 } res += grid[x1][y1] if x2 != x1 { // 避免重复摘同一个樱桃 res += grid[x2][y2] } f[k][x1][x2] = res } } } return max(f[n*2-2][n-1][n-1], 0) } func min(a, b int) int { if a > b { return b } return a } func max(a, b int) int { if b > a { return b } return a }
java 解法, 执行用时: 14 ms, 内存消耗: 43.3 MB, 提交时间: 2023-06-12 15:58:38
class Solution { public int cherryPickup(int[][] grid) { int n = grid.length; int[][][] f = new int[n * 2 - 1][n][n]; for (int i = 0; i < n * 2 - 1; ++i) { for (int j = 0; j < n; ++j) { Arrays.fill(f[i][j], Integer.MIN_VALUE); } } f[0][0][0] = grid[0][0]; for (int k = 1; k < n * 2 - 1; ++k) { for (int x1 = Math.max(k - n + 1, 0); x1 <= Math.min(k, n - 1); ++x1) { int y1 = k - x1; if (grid[x1][y1] == -1) { continue; } for (int x2 = x1; x2 <= Math.min(k, n - 1); ++x2) { int y2 = k - x2; if (grid[x2][y2] == -1) { continue; } int res = f[k - 1][x1][x2]; // 都往右 if (x1 > 0) { res = Math.max(res, f[k - 1][x1 - 1][x2]); // 往下,往右 } if (x2 > 0) { res = Math.max(res, f[k - 1][x1][x2 - 1]); // 往右,往下 } if (x1 > 0 && x2 > 0) { res = Math.max(res, f[k - 1][x1 - 1][x2 - 1]); // 都往下 } res += grid[x1][y1]; if (x2 != x1) { // 避免重复摘同一个樱桃 res += grid[x2][y2]; } f[k][x1][x2] = res; } } } return Math.max(f[n * 2 - 2][n - 1][n - 1], 0); } }
python3 解法, 执行用时: 336 ms, 内存消耗: 19.3 MB, 提交时间: 2023-06-12 15:58:18
''' 动态规划 f[k][x1][x2]: 两个人A和B分别从(x1, k-x1)何(x2, k-x2)出发,到达(n-1, n-1)摘到最多樱桃个数 ''' class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: n = len(grid) f = [[[-inf] * n for _ in range(n)] for _ in range(n * 2 - 1)] f[0][0][0] = grid[0][0] for k in range(1, n * 2 - 1): for x1 in range(max(k - n + 1, 0), min(k + 1, n)): y1 = k - x1 if grid[x1][y1] == -1: continue for x2 in range(x1, min(k + 1, n)): y2 = k - x2 if grid[x2][y2] == -1: continue res = f[k - 1][x1][x2] # 都往右 if x1: res = max(res, f[k - 1][x1 - 1][x2]) # 往下,往右 if x2: res = max(res, f[k - 1][x1][x2 - 1]) # 往右,往下 if x1 and x2: res = max(res, f[k - 1][x1 - 1][x2 - 1]) # 都往下 res += grid[x1][y1] if x2 != x1: # 避免重复摘同一个樱桃 res += grid[x2][y2] f[k][x1][x2] = res return max(f[-1][-1][-1], 0)
python3 解法, 执行用时: 596 ms, 内存消耗: 71.7 MB, 提交时间: 2023-06-12 15:54:05
from typing import List from functools import lru_cache class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: rows, cols = len(grid), len(grid[0]) @lru_cache(None) def dfs(r1, c1, r2, c2): # r1+c1=r2+c2 if r1 < 0 or r2 < 0 or c1 < 0 or c2 < 0 or r1 > rows - 1 or r2 > rows - 1 or c1 > cols - 1 or c2 > cols - 1: return float('-inf') if grid[r1][c1] == -1 or grid[r2][c2] == -1: return float('-inf') if (r1, c1) == (rows - 1, cols - 1): return grid[r1][c1] ans = 0 if (r1, c1) == (r2, c2): ans += grid[r1][c1] else: ans += grid[r1][c1] + grid[r2][c2] ans += max(dfs(r1 + 1, c1, r2 + 1, c2), dfs(r1, c1 + 1, r2, c2 + 1), dfs(r1 + 1, c1, r2, c2 + 1), dfs(r1, c1 + 1, r2 + 1, c2)) return ans return max(0, dfs(0, 0, 0, 0)) # s = Solution() # s.cherryPickup([[0, 1, -1], [1, 0, -1], [1, 1, 1]])