列表

详情


144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

 

示例 1:

输入:root = [1,null,2,3]
输出:[1,2,3]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

示例 4:

输入:root = [1,2]
输出:[1,2]

示例 5:

输入:root = [1,null,2]
输出:[1,2]

 

提示:

 

进阶:递归算法很简单,你可以通过迭代算法完成吗?

相似题目

二叉树的中序遍历

验证前序遍历序列二叉搜索树

N 叉树的前序遍历

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<int> preorderTraversal(TreeNode* root) { } };

golang 解法, 执行用时: 0 ms, 内存消耗: 1.9 MB, 提交时间: 2023-12-11 22:46:49

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal1(root *TreeNode) (vals []int) {
    var p1, p2 *TreeNode = root, nil
    for p1 != nil {
        p2 = p1.Left
        if p2 != nil {
            for p2.Right != nil && p2.Right != p1 {
                p2 = p2.Right
            }
            if p2.Right == nil {
                vals = append(vals, p1.Val)
                p2.Right = p1
                p1 = p1.Left
                continue
            }
            p2.Right = nil
        } else {
            vals = append(vals, p1.Val)
        }
        p1 = p1.Right
    }
    return
}

func preorderTraversal(root *TreeNode) (vals []int) {
    stack := []*TreeNode{}
    node := root
    for node != nil || len(stack) > 0 {
        for node != nil {
            vals = append(vals, node.Val)
            stack = append(stack, node)
            node = node.Left
        }
        node = stack[len(stack)-1].Right
        stack = stack[:len(stack)-1]
    }
    return
}

python3 解法, 执行用时: 44 ms, 内存消耗: 16.1 MB, 提交时间: 2023-12-11 22:46:03

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    # 递归
    def preorderTraversal1(self, root: TreeNode) -> List[int]:
        def preorder(root: TreeNode):
            if not root:
                return
            res.append(root.val)
            preorder(root.left)
            preorder(root.right)
        
        res = list()
        preorder(root)
        return res

    # 迭代
    def preorderTraversal2(self, root: TreeNode) -> List[int]:
        res = list()
        if not root:
            return res
        
        stack = []
        node = root
        while stack or node:
            while node:
                res.append(node.val)
                stack.append(node)
                node = node.left
            node = stack.pop()
            node = node.right
        return res
        
    # morris遍历
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        res = list()
        if not root:
            return res
        
        p1 = root
        while p1:
            p2 = p1.left
            if p2:
                while p2.right and p2.right != p1:
                    p2 = p2.right
                if not p2.right:
                    res.append(p1.val)
                    p2.right = p1
                    p1 = p1.left
                    continue
                else:
                    p2.right = None
            else:
                res.append(p1.val)
            p1 = p1.right
        
        return res

java 解法, 执行用时: 0 ms, 内存消耗: 40.1 MB, 提交时间: 2023-12-11 22:44:15

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        preorder(root, res);
        return res;
    }

    public void preorder(TreeNode root, List<Integer> res) {
        if (root == null) {
            return;
        }
        res.add(root.val);
        preorder(root.left, res);
        preorder(root.right, res);
    }
}

java 解法, 执行用时: 0 ms, 内存消耗: 39.9 MB, 提交时间: 2023-12-11 22:43:54

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }

        TreeNode p1 = root, p2 = null;

        while (p1 != null) {
            p2 = p1.left;
            if (p2 != null) {
                while (p2.right != null && p2.right != p1) {
                    p2 = p2.right;
                }
                if (p2.right == null) {
                    res.add(p1.val);
                    p2.right = p1;
                    p1 = p1.left;
                    continue;
                } else {
                    p2.right = null;
                }
            } else {
                res.add(p1.val);
            }
            p1 = p1.right;
        }
        return res;
    }

    public List<Integer> preorderTraversal2(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }

        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode node = root;
        while (!stack.isEmpty() || node != null) {
            while (node != null) {
                res.add(node.val);
                stack.push(node);
                node = node.left;
            }
            node = stack.pop();
            node = node.right;
        }
        return res;
    }
}

cpp 解法, 执行用时: 4 ms, 内存消耗: 8.5 MB, 提交时间: 2023-12-11 22:42:57

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> res;
        if (root == nullptr) {
            return res;
        }

        TreeNode *p1 = root, *p2 = nullptr;

        while (p1 != nullptr) {
            p2 = p1->left;
            if (p2 != nullptr) {
                while (p2->right != nullptr && p2->right != p1) {
                    p2 = p2->right;
                }
                if (p2->right == nullptr) {
                    res.emplace_back(p1->val);
                    p2->right = p1;
                    p1 = p1->left;
                    continue;
                } else {
                    p2->right = nullptr;
                }
            } else {
                res.emplace_back(p1->val);
            }
            p1 = p1->right;
        }
        return res;
    }
};

cpp 解法, 执行用时: 4 ms, 内存消耗: 8.8 MB, 提交时间: 2023-12-11 22:42:39

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> res;
        if (root == nullptr) {
            return res;
        }

        stack<TreeNode*> stk;
        TreeNode* node = root;
        while (!stk.empty() || node != nullptr) {
            while (node != nullptr) {
                res.emplace_back(node->val);
                stk.emplace(node);
                node = node->left;
            }
            node = stk.top();
            stk.pop();
            node = node->right;
        }
        return res;
    }
};

cpp 解法, 执行用时: 0 ms, 内存消耗: 8.7 MB, 提交时间: 2023-12-11 22:42:22

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void preorder(TreeNode *root, vector<int> &res) {
        if (root == nullptr) {
            return;
        }
        res.push_back(root->val);
        preorder(root->left, res);
        preorder(root->right, res);
    }

    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> res;
        preorder(root, res);
        return res;
    }
};

golang 解法, 执行用时: 0 ms, 内存消耗: 2 MB, 提交时间: 2021-07-22 10:10:43

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
    var dfs func(*TreeNode)

    dfs = func(node *TreeNode) {
        if node != nil {
            ans = append(ans, node.Val)
            dfs(node.Left)
            dfs(node.Right)
        }
    }

    dfs(root)

    return ans
}

golang 解法, 执行用时: 0 ms, 内存消耗: 2 MB, 提交时间: 2021-06-11 11:13:00

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
    var inorder func(*TreeNode)

    inorder = func(node *TreeNode) {
        if node != nil {
            ans = append(ans, node.Val)
            inorder(node.Left)
            inorder(node.Right)
        }
    }

    inorder(root)

    return ans
}

上一题