列表

详情


剑指 Offer II 031. 最近最少使用缓存

运用所掌握的数据结构,设计和实现一个  LRU (Least Recently Used,最近最少使用) 缓存机制

实现 LRUCache 类:

 

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

 

提示:

 

进阶:是否可以在 O(1) 时间复杂度内完成这两种操作?

 

注意:本题与主站 146 题相同:https://leetcode.cn/problems/lru-cache/ 

原站题解

去查看

上次编辑到这里,代码来自缓存 点击恢复默认模板
class LRUCache { public: LRUCache(int capacity) { } int get(int key) { } void put(int key, int value) { } }; /** * Your LRUCache object will be instantiated and called as such: * LRUCache* obj = new LRUCache(capacity); * int param_1 = obj->get(key); * obj->put(key,value); */

golang 解法, 执行用时: 428 ms, 内存消耗: 81.6 MB, 提交时间: 2022-11-23 16:51:23

type LRUCache struct {
    size int
    capacity int
    cache map[int]*DLinkedNode
    head, tail *DLinkedNode
}

type DLinkedNode struct {
    key, value int
    prev, next *DLinkedNode
}

func initDLinkedNode(key, value int) *DLinkedNode {
    return &DLinkedNode{
        key: key,
        value: value,
    }
}

func Constructor(capacity int) LRUCache {
    l := LRUCache{
        cache: map[int]*DLinkedNode{},
        head: initDLinkedNode(0, 0),
        tail: initDLinkedNode(0, 0),
        capacity: capacity,
    }
    l.head.next = l.tail
    l.tail.prev = l.head
    return l
}

func (this *LRUCache) Get(key int) int {
    if _, ok := this.cache[key]; !ok {
        return -1
    }
    node := this.cache[key]
    this.moveToHead(node)
    return node.value
}


func (this *LRUCache) Put(key int, value int)  {
    if _, ok := this.cache[key]; !ok {
        node := initDLinkedNode(key, value)
        this.cache[key] = node
        this.addToHead(node)
        this.size++
        if this.size > this.capacity {
            removed := this.removeTail()
            delete(this.cache, removed.key)
            this.size--
        }
    } else {
        node := this.cache[key]
        node.value = value
        this.moveToHead(node)
    }
}

func (this *LRUCache) addToHead(node *DLinkedNode) {
    node.prev = this.head
    node.next = this.head.next
    this.head.next.prev = node
    this.head.next = node
}

func (this *LRUCache) removeNode(node *DLinkedNode) {
    node.prev.next = node.next
    node.next.prev = node.prev
}

func (this *LRUCache) moveToHead(node *DLinkedNode) {
    this.removeNode(node)
    this.addToHead(node)
}

func (this *LRUCache) removeTail() *DLinkedNode {
    node := this.tail.prev
    this.removeNode(node)
    return node
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * obj := Constructor(capacity);
 * param_1 := obj.Get(key);
 * obj.Put(key,value);
 */

python3 解法, 执行用时: 672 ms, 内存消耗: 70.4 MB, 提交时间: 2022-11-23 16:50:54

class DLinkedNode:
    def __init__(self, key=0, value=0):
        self.key = key
        self.value = value
        self.prev = None
        self.next = None


class LRUCache:

    def __init__(self, capacity: int):
        self.cache = dict()
        # 使用伪头部和伪尾部节点    
        self.head = DLinkedNode()
        self.tail = DLinkedNode()
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.size = 0

    def get(self, key: int) -> int:
        if key not in self.cache:
            return -1
        # 如果 key 存在,先通过哈希表定位,再移到头部
        node = self.cache[key]
        self.moveToHead(node)
        return node.value

    def put(self, key: int, value: int) -> None:
        if key not in self.cache:
            # 如果 key 不存在,创建一个新的节点
            node = DLinkedNode(key, value)
            # 添加进哈希表
            self.cache[key] = node
            # 添加至双向链表的头部
            self.addToHead(node)
            self.size += 1
            if self.size > self.capacity:
                # 如果超出容量,删除双向链表的尾部节点
                removed = self.removeTail()
                # 删除哈希表中对应的项
                self.cache.pop(removed.key)
                self.size -= 1
        else:
            # 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
            node = self.cache[key]
            node.value = value
            self.moveToHead(node)
    
    def addToHead(self, node):
        node.prev = self.head
        node.next = self.head.next
        self.head.next.prev = node
        self.head.next = node
    
    def removeNode(self, node):
        node.prev.next = node.next
        node.next.prev = node.prev

    def moveToHead(self, node):
        self.removeNode(node)
        self.addToHead(node)

    def removeTail(self):
        node = self.tail.prev
        self.removeNode(node)
        return node


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

python3 解法, 执行用时: 532 ms, 内存消耗: 69.1 MB, 提交时间: 2022-11-23 16:50:26

class LRUCache(collections.OrderedDict):

    def __init__(self, capacity: int):
        super().__init__()
        self.capacity = capacity


    def get(self, key: int) -> int:
        if key not in self:
            return -1
        self.move_to_end(key)
        return self[key]

    def put(self, key: int, value: int) -> None:
        if key in self:
            self.move_to_end(key)
        self[key] = value
        if len(self) > self.capacity:
            self.popitem(last=False)


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

python3 解法, 执行用时: 636 ms, 内存消耗: 69.7 MB, 提交时间: 2022-11-23 16:49:24

class ListNode:
    def __init__(self, key=None, value=None):
        self.key = key
        self.value = value
        self.prev = None
        self.next = None


class LRUCache:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.hashmap = {}
        # 新建两个节点 head 和 tail
        self.head = ListNode()
        self.tail = ListNode()
        # 初始化链表为 head <-> tail
        self.head.next = self.tail
        self.tail.prev = self.head

    # 因为get与put操作都可能需要将双向链表中的某个节点移到末尾,所以定义一个方法
    def move_node_to_tail(self, key):
            # 先将哈希表key指向的节点拎出来,为了简洁起名node
            #      hashmap[key]                               hashmap[key]
            #           |                                          |
            #           V              -->                         V
            # prev <-> node <-> next         pre <-> next   ...   node
            node = self.hashmap[key]
            node.prev.next = node.next
            node.next.prev = node.prev
            # 之后将node插入到尾节点前
            #                 hashmap[key]                 hashmap[key]
            #                      |                            |
            #                      V        -->                 V
            # prev <-> tail  ...  node                prev <-> node <-> tail
            node.prev = self.tail.prev
            node.next = self.tail
            self.tail.prev.next = node
            self.tail.prev = node

    def get(self, key: int) -> int:
        if key in self.hashmap:
            # 如果已经在链表中了久把它移到末尾(变成最新访问的)
            self.move_node_to_tail(key)
        res = self.hashmap.get(key, -1)
        if res == -1:
            return res
        else:
            return res.value

    def put(self, key: int, value: int) -> None:
        if key in self.hashmap:
            # 如果key本身已经在哈希表中了就不需要在链表中加入新的节点
            # 但是需要更新字典该值对应节点的value
            self.hashmap[key].value = value
            # 之后将该节点移到末尾
            self.move_node_to_tail(key)
        else:
            if len(self.hashmap) == self.capacity:
                # 去掉哈希表对应项
                self.hashmap.pop(self.head.next.key)
                # 去掉最久没有被访问过的节点,即头节点之后的节点
                self.head.next = self.head.next.next
                self.head.next.prev = self.head
            # 如果不在的话就插入到尾节点前
            new = ListNode(key, value)
            self.hashmap[key] = new
            new.prev = self.tail.prev
            new.next = self.tail
            self.tail.prev.next = new
            self.tail.prev = new


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

上一题