列表

详情


剑指 Offer II 117. 相似的字符串

如果交换字符串 X 中的两个不同位置的字母,使得它和字符串 Y 相等,那么称 XY 两个字符串相似。如果这两个字符串本身是相等的,那它们也是相似的。

例如,"tars""rats" 是相似的 (交换 02 的位置); "rats""arts" 也是相似的,但是 "star" 不与 "tars""rats",或 "arts" 相似。

总之,它们通过相似性形成了两个关联组:{"tars", "rats", "arts"}{"star"}。注意,"tars""arts" 是在同一组中,即使它们并不相似。形式上,对每个组而言,要确定一个单词在组中,只需要这个词和该组中至少一个单词相似。

给定一个字符串列表 strs。列表中的每个字符串都是 strs 中其它所有字符串的一个 字母异位词 。请问 strs 中有多少个相似字符串组?

字母异位词(anagram),一种把某个字符串的字母的位置(顺序)加以改换所形成的新词。

 

示例 1:

输入:strs = ["tars","rats","arts","star"]
输出:2

示例 2:

输入:strs = ["omv","ovm"]
输出:1

 

提示:

   

注意:本题与主站 839 题相同:https://leetcode.cn/problems/similar-string-groups/

原站题解

去查看

class Solution {
public:
int numSimilarGroups(vector<string>& strs) {
}
};
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

golang 解法, 执行用时: 8 ms, 内存消耗: 4 MB, 提交时间: 2023-01-12 10:09:54

type unionFind struct {
parent, size []int
setCount int //
}
func newUnionFind(n int) *unionFind {
parent := make([]int, n)
size := make([]int, n)
for i := range parent {
parent[i] = i
size[i] = 1
}
return &unionFind{parent, size, n}
}
func (uf *unionFind) find(x int) int {
if uf.parent[x] != x {
uf.parent[x] = uf.find(uf.parent[x])
}
return uf.parent[x]
}
func (uf *unionFind) union(x, y int) {
fx, fy := uf.find(x), uf.find(y)
if fx == fy {
return
}
if uf.size[fx] < uf.size[fy] {
fx, fy = fy, fx
}
uf.size[fx] += uf.size[fy]
uf.parent[fy] = fx
uf.setCount--
}
func (uf *unionFind) inSameSet(x, y int) bool {
return uf.find(x) == uf.find(y)
}
func isSimilar(s, t string) bool {
diff := 0
for i := range s {
if s[i] != t[i] {
diff++
if diff > 2 {
return false
}
}
}
return true
}
func numSimilarGroups(strs []string) int {
n := len(strs)
uf := newUnionFind(n)
for i, s := range strs {
for j := i + 1; j < n; j++ {
if !uf.inSameSet(i, j) && isSimilar(s, strs[j]) {
uf.union(i, j)
}
}
}
return uf.setCount
}

python3 解法, 执行用时: 240 ms, 内存消耗: 15.3 MB, 提交时间: 2023-01-12 10:09:32

class Solution:
def numSimilarGroups(self, strs: List[str]) -> int:
n = len(strs)
f = list(range(n))
def find(x: int) -> int:
if f[x] == x:
return x
f[x] = find(f[x])
return f[x]
def check(a: str, b: str) -> bool:
num = 0
for ac, bc in zip(a, b):
if ac != bc:
num += 1
if num > 2:
return False
return True
for i in range(n):
for j in range(i + 1, n):
fi, fj = find(i), find(j)
if fi == fj:
continue
if check(strs[i], strs[j]):
f[fi] = fj
ret = sum(1 for i in range(n) if f[i] == i)
return ret

java 解法, 执行用时: 10 ms, 内存消耗: 40.7 MB, 提交时间: 2023-01-12 10:08:53

class Solution {
int[] f;
public int numSimilarGroups(String[] strs) {
int n = strs.length;
int m = strs[0].length();
f = new int[n];
for (int i = 0; i < n; i++) {
f[i] = i;
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int fi = find(i), fj = find(j);
if (fi == fj) {
continue;
}
if (check(strs[i], strs[j], m)) {
f[fi] = fj;
}
}
}
int ret = 0;
for (int i = 0; i < n; i++) {
if (f[i] == i) {
ret++;
}
}
return ret;
}
public int find(int x) {
return f[x] == x ? x : (f[x] = find(f[x]));
}
public boolean check(String a, String b, int len) {
int num = 0;
for (int i = 0; i < len; i++) {
if (a.charAt(i) != b.charAt(i)) {
num++;
if (num > 2) {
return false;
}
}
}
return true;
}
}

上一题